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ABSTRACT

Traditional estimates of health risk are typically inflated, particularly if cancer is the

dominant endpoint and there is fundamental uncertainty as to mechanism(s) of action.

Risk is more realistically characterized if it accounts for joint uncertainty and

interindividual variability within a systematic probabilistic framework to integrate the

joint effects on risk of distributed parameters of all (linear as well as nonlinear) risk-

extrapolation models involved. Such a framework was used to characterize risks to

potential future residents posed by trichloroethylene (TCE) in ground water at an

inactive landfill site on Beale Air Force Base in California. Variability and uncertainty

were addressed in exposure-route-specific estimates of applied dose, in

pharmacokinetically based estimates of route-specific metabolized fractions of absorbed

TCE, and in corresponding biologically effective doses estimated under a

genotoxic/linear (MA~) vs. a cytotoxic/nonlinear (M&) mechanistic assumption for

TCE-induced cancer. Increased risk conditional on effective dose was estimated under

MA~ based on seven rodent-bioassay data sets, and under M& based on mouse

hepatotoxicity data. Mean and upper-bound estimates of combined risk calculated by

the unified approach were CIO-Gand C10-4, respectively, while corresponding estimates

based on traditional deterministic methods were >10-5 and >10-4, respectively. It was

estimated that no TCE-related harm is likely to occur due to any plausible residential

exposure scenario involving the site. The systematic probabilistic framework illustrated

is particularly suited to characterizing risks that involve uncertain and/or diverse

mechanisms of action.



1. INTRODUCTION

This report describes methods and results pertaining to Phase 2 of a study

involving quantitative consideration of joint uncertainty and interindividual variability

in risk to hypothetical future residents posed by trichloroethylene (TCE) in ground

water at the inactive landfill Site LF-13 on Beale Air Force Base in California. The

background of this study is discussed below, followed by summaries of the rationale

for this study’s focus on quantitative analysis of joint uncertainty and variability;

technical hurdles posed by undertaking such an analysis in a way that explicitly

addresses carcinogenic dose-response of TCE in view of fundamental uncertainty

concerning its carcinogenic mode of action; and study goals of Phase 2 of the analysis

undertaken of risk posed by TCE at Site LF-13. Specific methods used to address the

latter goals are presented in Section 2 of this report. Results obtained by applying these

methods are presented in Section 3, followed in Section 4 by a discussion of the results

obtained. References cited in this report are listed in Section 5. Appendix 1 supplies

mathematical details concerning the “method of moments” used throughout in this

report to make assumptions about lognormal variates. Appendix 2 supplies a proof

concerning the distribution of a linear function of correlated t-distributed variates.

Finally, Appendix 3 documents all calculations performed for this study.

The general background of the present study and its Phase-1 counterpart is

provided in Section 1.1 below, followed by: a summary of the rationale for the

emphasis in this report placed on quantitative analysis of joint uncertainty and

variability (Section 1.2), a discussion of the present fundamental uncertainty pertaining

to mechanism(s) of action for TCE-induced cancer (Section 1.3), issues involving

quantitative analysis of joint uncertainty and variability in dose-response for TCE-

induced cancer (Section 1.4), and the specific goals of the present report (Section 1.5).

1.1. Background

Traditional point estimates of risk are calculated deterministically using worst-case

assumptions for some or all input parameters, in a way that does not quantitatively

account for uncertainty and interindividual variability pertaining to these parameters.

Traditional point-estimates of risk are thus typically inflated and health-conservative,

particularly if the cancer is the dominant endpoint and there is fundamental uncertainty



as to mechanism(s) of action. Risk is more realistically characterized if it accounts for

joint uncertainty and interindividual variability within a systematic probabilistic

framework to integrate the joint effects on risk of distributed parameters in all (linear as

well as nonlinear) risk-extrapolation models for all (cancer as well as noncancer)

endpoints involved. Because no such systematic probabilistic framework existed, one

was developed for the present case study involving the inactive Landfill Site LF-13 on

Beale Air Force Base in California, where groundwater contaminated with

trichloroethylene (TCE) has moved beyond the site boundary. Soil-vapor extraction

and air-stripping treatment of groundwater have been undertaken to reduce

concentrations of TCE and other volatile organic compounds in ground water beneath

Site LF-13 (URSGWC, 1998). Site LF-13 is located in a currently rural area of the

Sacramento Valley of California, where groundwater wells are the principle source of

domestic water supplies. The present analysis was undertaken to provide a realistic

characterization of hypothetical TCE-related risks associated with potential future

domestic/residential uses of groundwater from beneath Site LF-13, in view of the

possibility that residential populations may eventually occupy ltids adjacent to the site.

This study was conducted in two phases. Phase 1 focused on the impact of joint

uncertainty and interindividual variability (JUV) on estimates of combined TCE intakes

via different exposure pathways (Daniels et al., 1999, 2000). Uncertainty here refers to

an absence of measurement data or incomplete knowledge; interindividual variability

(or “variability”) here refers to true differences or heterogeneity in an empirical, risk-

related characteristic (e.g., physiological differences) among individuals in a population

(Bogen and Spear, 1987; NRC, 1994). Although results of the Phase 1 analysis were

presented as a characterization of risk rather than exposure, risk was estimated in that

analysis simply as the product of estimated combined exposures (in mg kg-l d-l) and

respective factors representing carcinogenic potency (in kg d mg-l), each of which factor

was represented by a single point estimate. Thus, JUV in risk characterized in Phase 1

reflected only JUV in estimated exposure, and in no way addressed JUV associated with

TCE pharmacokinetics, dose-response, alternative mechanisms of toxic action, or

multiple toxic endpoints. The TCE concentration in Phase 1 was estimated based on

groundwater-monitoring data for a well on Site LF-13 near the possible location of a

future groundwater extraction and distribution system (Purrier, 1997). After

5



considering concentration uncertainty and JUV in potential multi-route exposures to

TCE from Site LF-13 ground water, corresponding JUV in risk was characterized and

compared to corresponding risk estimators that were calculated using traditional

deterministic methods (Daniels et al., 2000).

Phase 2 of the study described above is the subject of the present report. Phase 2

involved the development of new methods allowing additional information to be

integrated into a Phase-l-type TCE risk assessment for Site LF-13. This additional

information involves JUV in predicted risk conditional on route-specific TCE exposures.

As further explained below, this was accomplished by combining exposure

distributions and methods presented in the Phase-1 study with TCE-related

pharmacokinetic and dose-response methods and information developed in the present

study, to provide an improved characterization of TCE-related risk associated with Site

LF-13 at Beale AFB.

1.2. Importance of Quantitative Analysis of Joint Uncertainty and Variability

This study focuses on integrating information on joint uncertainty and

interindividual variability (JUV) to obtain more meaningful and more realistic estimates

of exposure and risk. In the report, Science and Judgrnenf in Risk Assessment, the National

Research Council (NRC) emphasized the importance of distinguishing clearly between

uncertainty (i.e., lack of knowledge) and interindividual “variability” (i.e.,

heterogeneity or differences pertaining to people at risk) in risk assessment (NRC,

1994). Uncertainty in characterized risk reflects the extent to which a risk estimate is

likely to be erroneous, due to gaps in data and/or theory that imply statistical and/or

model-specification error. Interindividual variability in characterized risk reflects the

extent to which a risk is unequally imposed on members of the population at risk.

While uncertainty reduces the confidence or reliability that can be placed in a risk

estimate, variability can be viewed as a measure of perceived unfairness or inequity

represented by the distribution of imposed risks. Because reliabili$ and equity issues

are clearly related to perceived and/or statutorily defined risk acceptability criteria,

both these dimensions may be relevant to risk-management policy decisions.

Quantitative characterization of joint uncertainty and variability (JUV) in risk is a

way to address risk-related uncertainty and variability concisely and explicitly to

6



facilitate risk management decisions. When JUVis addressed quantitatively in the

input distributions used to characterize the inputs (e.g., on ambient concentration,

uptake, and dose-response) of a risk assessment, the distinction between uncertainty

and variability ought to be maintained rigorously throughout the analytic process so

that uncertainty and variability can be reflected distinctly in the calculated risk. This

recommendation was expressed by the NRC (1994, p. 242) as follows:

“A distinction between uncertainty (i.e., degree of potential error) and
inter-individual variability (i.e., population heterogeneity) is generally
required if the resulting quantitative risk characterization is to be
optimally useful for regulatory purposes, particularly insofar as risk
characterizations are treated quantitatively. The distinction between
uncertainty and individual variability ought to be maintained rigorously
at the level of separate risk-assessment components (e.g., ambient
concentration, uptake, and potency) as well as at the level of an integrated
risk characterization.”

If no distinction is made between uncertainty-related and heterogeneity-related

distributions associated with inputs to a given risk calculation, then the resulting

distribution necessarily reflects risk to an individual selected at random from the

exposed population (Bogen and Spear, 1987). By definition, this resulting distribution

cannot be used for any regulatory decision intending to address equity issues by

focusing on risk borne by relatively more sensitive and/or relatively more highly .

exposed members of the population at risk. Another advantage of distinguishing

between uncertainty and variability is that it permits one to estimate the uncertainty in

the risk to the individual who is “average” with respect to all characteristics that are

heterogeneous among individuals at risk. Only the latter quantity can be used to

estimate corresponding uncertainty in predicted population risk (i.e., uncertainty in the

predicted number of cases), and thus, in particular, to estimate the likelihood of zero

cases (i.e., the likelihood that remediation of the exposure scenario considered will have

no positive impact whatsoever on public health) (Bogen and Spear, 1987).

1.3. Uncertainty in Mechanism(s) of Toxic Action

Liver is clearly a target tissue for TCE-induced cancer based on lifetime bioassay

data on chronically exposed mice; relatively large acute, subchronic, or chronic TCE

exposures are hepatotoxic in multiple species; and hepatocellular toxicity in mice is the

most sensitive TCE-induced noncancer (but possibly cancer-related) endpoint (Bogen
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and Gold, 1997; Bogen et al., 1988; USEPA, 1985). Limited epidemiological data also

support liver cancer as a TCE-induced endpoint in occupationally exposed humans

(Wartenberg, 2000). DNA-binding and weak mutagenicity associated with TCE

metabolizes after TCE administration indicates that genotoxicity maybe responsible for

some or all TCE-induced cancer (Bogen and Gold, 1997; Fahrig et al., 1995). Two TCE

metabolizes in particular, trichloroacetic acid (TCA) and dichloroacetic acid (DCA), both

induce and promote liver tumors in a mouse strain (B6C3F1) which is positive for TCE-

induced liver cancer, whereas liver tumors did not appear in rats exposed to either TCE

by gavage or to TCA via drinking water (Bogen and Gold, 1997; Bull et al., 1990;

DeAngelo et al., 1997; DeAngelo et al., 1991; Herren-Freund et al., 1987; l?ereira, 1996;

Pereira and Phelps, 1996). DCA in particular was found recently to be weakly

mutagenic in mouse lymphoma cells with a mutagenic potency similar to the classic

mutagen ethyl methanesulfonate, whereas only very weak mutagenic activity was

detected using either the major reactive TCE metabolize, chloral hydrate (CH), or its

breakdown product TCA (Barrington-Brock et al., 1998; Moore and Barrington-Brock,

2000). Initial studies found DCA to be more reactive and toxic than TCE, and thus more

likely to account for observed TCE-induced cancer in bioassay mice (Larson and Bull,

1992a-b; Templin et al., 1993). However, more recent studies that controlled for ex vivo

formation of DCA during sample preparation indicate that very little, if any, DCA was

actually produced in TCE-exposed B6C3F1 mice, imply the same for humans as well

(Lash et al., 2000a), and are consistent with the hypothesis that DCA is unlikely to

explain TCE-induced mouse tumors (Andersen et al., 1998; Merdink et al., 1998) or to be

relevant in extrapolating TCE-induced cancer risk for humans (Bull, 2000).

The generally weak mutagenicity of TCE and its metabolizes (Moore and

Barrington-Brock, 2000), as well as correlations between hepatotoxic indicators induced

by reactive TCE metabolizes and precursors to TCE-induced liver tumorigenesis (Bogen

and Gold, 1997), provide substantial (although not definitive) support a cytotoxic

mechanism of TCE-induced carcinogenic action. Hepatotoxic lipid peroxidation was

found to be induced by TCA in mice and rats, but mice were found to be more sensitive

than rats (Larson and Bull, 1992a). This differential sensitivity to a TCA-induced

cytotoxic endpoint is consistent with a cytotoxicity-based explanation of TCE-induced

liver tumors in mice but not rats. A more recent study of lipid peroxidation induced in
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B6C3F1 mouse liver concluded that the amount of such peroxidation induced by “TCA

equaled that induced by CH, whereas that from [trichloroethanol, another major, but

less toxic and reactive, TCE metabolize] was 3- to 4-fold lower, suggesting that

metabolism of CH to TCA may be the predominant pathway leading to lipid

peroxidation” (Ni et al., 1996). Lipoperoxidation-induced oxidative stress may explain

or correlate with the induction of hepatocellular replicative DNA synthesis and

hepatocellular proliferation that has been observed in TCA-exposed B6C3F1 mice (Dees

and Travis, 1994). Increased cell proliferation, in turn, either alone or in combination

with genotoxic conditions, has long been considered sufficient to explain increased rates

of cancer in view of biologically based mechanistic cell-kinetic multistage cancer theory,

as well as based on experimental, epidemiological and clinical observations (Ames and

Gold, 1990a; Ames and Gold, 1990b; Ames et al., 1993,1995; Armitage and Doll, 1957;

Bogen, 1989; Cohen and Ellwein, 1990,1991; Moolgavkar, 1983; Moolgavkar and

Knudson, 1981; Moolgavkar et al., 1988).

Statistical considerations support rejecting lung as a significant target site for TCE-

induced cancer in rodents (Bogen and Gold, 1997). Epidemiological evidence of TCE-

induced kidney cancer in humans has been characterized variously as “limited”,

“suggestive”, and “neither consistent nor convincing,” but additional recent data

appear to indicate that kidney cancer risk is elevated among metabolically susceptible

workers with very large TCE exposures (Lash et al., 2000b). While National Toxicology

Program (NTP) bioassay data also indicate that kidney cancer is induced

experimentally by chronic TCE exposure is the rat (but not mouse), these data were all

judged to be “inadequate” after NTP review, with mild to severe renal toxicity observed

at every non-control dose level in every species/sex combination in the bioassays

(Bogen and Gold, 1997; NTP, 1988,1990). The NTP rats studies and limited/suggestive

epidemiological data comprise the only evidence that TCE-induced renal tumors are

plausibly relevant to humans (Bogen and Gold, 1997; Bogen et al., 1988; USEPA, 1985;

Lash et al., 2000b). The rat tumor data are consistent with a cytotoxic mechanism of

action for renal carcinogenesis, although mutagenicity of renal TCE-metabolites such as

S-(1,2-dichlorovinyl)-L-cysteine (DCVC) indicates that genotoxicity may also play a role

(Bogen and Gold, 1997; Fahrig et al., 1995; Lash et al., 2000a-b). Interestingly, while

subchronically administered TCA and acutely administered DCVC were both found to
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be nephrotoxic and to induce cell proliferation in rat kidney tubules, the DCVD-

induced response in mice (in which TCE-induced kidney tumors have not been

observed) was much more pronounced than in rats (in which TCE-induced kidney

tumors have been observed) (Acharya et al., 1997; Eyre et al., 1995). Consequently, the

same uncertainties regarding the mechanism of TCE-induced hepatocarcinogenicity

apply to the mechanism of possible TCE-induced renal tumors.

The U.S. Environmental Protection Agency (USEPA) has not explicitly endorsed the

quantitative combination of “model” uncertainty with other types of uncertainty in

cancer risk assessments for compounds like TCE (USEPA, 1996). This USEPA position

is consistent with a recent NRC recommendation against this type of quantitative

treatment as opposed to narrative/qualitative comparisons of model-specific analyses

(NRC, 1994). However, the restriction of “model” uncertainty to be characterized only

nonquantitatively needlessly reduces the clarity of risk analysis, because there is no

logical merit to the distinction between “model” and “parameter” uncertainty. As the

NRC report itself pointed out, the former is logically equivalent to the latter when

incorporated into a suitably general model that specifies, through values assigned to

one or more uncertain parameters, any particular but uncertain model characteristics

(i.e., substructures) of concern (NRC, 1994; p. 187).

1.4. Technical Issues Posed by Quantitative Analysis of Joint Uncertainty and
Variability in Dose-Response for TCE-Induced Risk

In view of the issues discussed above, there were several technical issues that had

to be addressed in this study due to its primary focus on quantitative analysis of JUV in

dose-response for TCE-induced risk. These issues concern the lack of coordinated

methods that consistently and simultaneously address:

(i) multiple toxic (in this case, cancer and noncancer) endpoints with
potentially disparate dose-response relations,

(ii) multiple plausible mechanisms of carcinogenic action,

(iii) efficient treatment of pharmacokinetic relations, and

(iv) integrated, quantitative treatment of JUV in exposure, dose-response,
and risk calculations.

General approaches to issues (i) and (iv) have been reviewed (Bogen, 1995; NRC, 1994).

Also pertaining to issues (i) and (iv) are proposed methods to extend quantitative
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probabilistic methods now commonly applied in cancer risk assessment to noncancer

endpoints, which involve replacing traditional uncertainty/safety factors by

corresponding empirically based, or reasonable default, probability distributions (Baird

et al., 1996; Carlson-Lynch et al., 1999; Dourson et al., 1996; Lewis, 1993; Renwick, 1993;

Slob and Pieters, 1998; Weil, 1972). Issue (ii) is a major focus of the proposed USEPA

guidelines for carcinogen risk assessment (USEPA, 1996), but in this regard the USEPA

recommends a non-quantitative, narrative approach that cannot possibly address issue

(iv). Concerning issue (iii), a number of physiologically based pharmacokinetic (PBPK)

models have been developed for TCE (Abbas and Fisher, 1997; Allen and Fisher, 1993;

Fisher and Allen, 1993; Fisher et al., 1998; Stenner et al., 1998), and corresponding

methods for efficient PBPK analysis have been developed under different mechanistic

assumptions concerning TCE-induced cancer (Bogen, 1988; Bogen and Gold, 1997).

Concerning issues (ii) and (iii), PBPK methods for TCE have been applied under

alternative mechanistic assumptions (Fisher and Allen, 1993), but this has never been

done in a way that integrates JUV information or efficient analytic (as opposed to

numerical) PBPK-calculation methods.

In recently proposed revised methods for deriving Ambient Water Quality Criteria,

the USEPA indicated that a goal of these methods should be to integrate cancer and

noncancer assessments, and more specifically “to harmonize cancer and noncancer

dose-response approaches and permit comparisons of cancer and noncancer risk

estimates” (USEPA, 1998; p. 59,97). To the extent this goal was achieved, these

proposed methods would provide guidance on how to address issues (i)-(iv) in a

systematic probabilistic framework for risk assessment. While the proposed methods

do address multiple (cancer and noncancer) endpoints and alternative (linear vs.

nonlinear) mechanisms of carcinogenic action, they do not specifically facilitate or even

address their stated goal of integrating cancer and noncancer dose-response methods to

yield comparable or aggregate measures of risk. Furthermore, this goal is

unnecessarily impeded by some of the proposed methods, including those that either:

address dose-response differently for noncarcinogens vs. “nonlinear” carcinogens,

address generic pharmacokinetic considerations differently for noncarcinogens vs.

(“linear” or “nonlinear”) carcinogens, consider non-ingestive exposure as well as

human interindividual variability in dose-response for noncarcinogens and “nonlinear”
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carcinogens but not for “linear” carcinogens, or yield estimates of risk for “linear”

carcinogens but do not for noncarcinogens and “nonlinear” carcinogens.

The impact of such inconsistencies on the problem of how to do unified risk

assessment for cancer and noncancer endpoints is illustrated by the issue of whether or

how to apply a toxicodynamic scaling factor to account for systematic interspecies

differences in response as a function of biologically effective dose. For noncarcinogens,

recently proposed USEPA methods include a good explanation of why, in the absence

of relevant data, it is appropriate to apply two separate scaling factors (by default, each

equal to a factor of 3) to account for interspecies toxicokinetic and toxicodynamic

differences, respectively (USEPA, 1998; p. 140):

“The rationale for the use of PBI?K models is that the pharmacokinetics
and pharmacodynamics of a chemical each contribute to a chemical’s
observed toxicity, and specifically, to observed differences among species
in sensitivity. Pharmacokinetics describes the absorption, distribution,
metabolism, and elimination of chemicals in the body, while
pharmacodynamics describes the toxic interaction of the agent with the
target cell. In the absence of specific data on their relative contributions to
the toxic effects observed in species, each is considered to account for
approximately one half of the variability in observed effects, as is assumed
in the development of RfCs and RfDs [i.e., reference concentrations and
doses, respectively]. The implication of this assumption is that an
interspecies uncertainty factor of 3 rather than 10 could be used for
deriving an RfD when valid pharmacokinetic data and models can be
applied ... .“

For carcinogens, there is agreement that animal-to-human extrapolation of

toxicokinetically equivalent effective dose may be accomplished by the use of an

appropriate, validated PBPK model if one is available, and if not, by assuming that

toxicokinetically equivalent doses scale proportional to body surface area or

(body weight)on (USEPA, 1992,1996,1998). However, federal policy concerning

how/whether to apply an interspecies toxicodynamic scaling factor is not consistent.

For example, the Health/Risk Assessment Committee of the Integrated Chlorinated

Solvents Project (a committee comprised of representatives from four federal agencies)

held that “it is strongly arguable that the surface-area correction is not a correction on

dose to allow for pharmacokinetics, but rather a correction on risk to allow for many

factors, including pharmacodynamics” (USEPA, 1987a; p. 125). For “linear”

carcinogens, however, the USEPA has more recently proposed that no interspecies
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toxicodynamic scaling factor is required for carcinogens whenever a PBPK approach

has been used to account for interspecies toxicokinetic differences (USEPA, 1998).

Likewise, interindividual variability in sensitivity /susceptibilit y per se to

environmentally induced cancer is not typically considered in risk extrapolations for

carcinogens assumed to have a genotoxic/linear-no-threshold mechanism of action

(USEPA, 1996, 1998). In this respect, past practice has been to focus (implicitly) on risk

to persons who have an average level of susceptibility, when there is no reason to

predict that the exposed population is one that may reflect an unusual degree of

hypersusceptibility to environmentally induced cancer (NRC, 1994). For

noncarcinogens, however, a so-called “uncertainty” factor of up to 10 has traditionally

been applied “to account for the variation in sensitivity (intraspecies variation) among

the members of the human population”; and a similar factor was proposed recently by

the USEPA for use with all “nonlinear” carcinogens (USEPA, 1998; p. 110,122).

Confusion between uncertainty and interindividual variation also appears in proposed

new approaches to model differences in human sensitivity by probabilistic methods

rather than by the traditional use of “uncertainty” factors (Carlson-Lynch et al., 1999;

Slob and Pieters, 1998). Because there is little doubt that substantial human variability

exists in susceptibility to environmentally induced cancer (NRC, 1994), a truly

systematic probabilistic framework to assessing risks pertaining to cancer and

noncancer endpoints clearly requires a consistent approach to intraspecies variability in

dose-response.

Recent proposals for so-called “unified” or “comprehensive” approaches to risk

assessment for cancer and noncancer endpoints (Butterworth and Bogdanffy, 1999;

Gaylor et al., 1999) fail to address the complete set of issues (i)-(iv) listed above. These

proposals essentially recommend merely that a traditional safety-factor approach be

used for cancer and noncancer endpoints alike; they focus on how to define exposure

levels that protect against a single endpoint, rather than on how to calculate actual

levels of aggregate risk for both cancer and noncancer endpoints. Therefore, no

methods or studies exist that address the complete set of issues (i)-(iv) for integrated

risk characterization.
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1.5. Study Objectives

This study (Phase 2 together with Phase 1) was designed to accomplish two overall

objectives. The first overall objective was to provide to the U.S. Air Force and

regulatory agencies new quantitative procedures that address JUV in exposure and

dose-response assessment to better characterize potential health risk. Such methods

could be used at sites where populations may now or in the future be faced with using

groundwater contaminated with low concentrations of TCE. The second overall

objective was to illustrate and explain the application of these procedures with respect

to available data for TCE in ground water beneath an inactive landfill site that is

undergoing remediation at Beale Air Force Base in California. The results of this case

study are intended to illustrate how the more realistic and more meaningful risk

estimates obtained using methods we describe compare to corresponding conservative

risk estimates calculated using a traditional deterministic screening-level approach.

Application of the methods developed in this project can lead to more reasonable and

equitable risk-acceptability criteria for potentially exposed populations at specific sites.

The specific objective of the present report is to describe consistent and coherent

methods devised to address issues (a)-(d) discussed in the previous subsection, and to

report and discuss an application of these methods, together with other methods and

information developed in Phase 1 of this project, to the specific problem of

characterizing risk posed by TCE in ground water at Site LF-13 at Beale Air Force Base.

2. METHODS

Methods used to address joint uncertainty and interindividual variability (JUV) in

risk posed by TCE contamination at Site LF-13 was calculated and characterized as

described below in subsections pertaining to: (1) the systematic probabilistic framework

adopted for this analysis, (2) TCE concentration and route-specific exposures,

(3) corresponding biologically effective doses and related physiologically based

pharmacokinetic (PBPK) considerations, (4) dose-response for cancer and noncancer

endpoints, (5) characterization of joint uncertainty and interindividual variability (JUV)

in risk as a function of JUV in input parameters relating to topics (2)-(4) listed above,

and (6) data analysis and computation.
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Consistent with established JUV notation, an overbar (i.e.,’) here denotes

expectation with respect to heterogeneous parameters only, angle brackets (i.e., ( ))

denote expectation with respect to uncertain parameters only, each subscripted U

denotes acorresponding purely uncertain variate, and each subscripted Vdenotes a

corresponding purely interindividually heterogeneous variate (Bogen and Spear, 1987;

NRC, 1994; Bogen, 1995). The operator E (e.g., as in EX) is used to signify expectation

with respect either to variability or to uncertainty, bot not to both (e.g., to either the

variability-expectation ~, or to the uncertainty-expectation (X), with respect to a

variate X). Other italic capital letters are used to denote (potentially) JUV variates.

Also, each subscripted K denotes a corresponding constant used below to estimate risk,

Xw,p (in mg kg-l d-l) denotes a mechanistically relevant measure of TCE intake by the

indicated exposure pathway (P) that pertains to the indicated mechanism/mode of

action (MA) for TCE-induced toxicity, and DWY denotes a corresponding biologically

effective dose, where, for both X and D, the subscript MA specifies either a genotoxic

(G) or cytotoxic (C) assumed mode of action, and the subscript P indicates either an

ingestion (ing), inhalation (inh), or dermal (der) exposure pathway. Additional related

variates are defined below.

Some variates defined in Daniels et al. (2000), denoted as they were in that report,

are also referred to below. All constants and variates defined in the present report used

as inputs to estimate risk are defined below and are summarized in Table 2, which

appears at the end of Methods (after Section 2.6) prior to Results (Section 3).

2.1. Systematic Probabilistic Framework

Health risk associated with residential exposure to TCE from ground water at Site

LF-13 on Beale Air Force Base in California was analyzed using the systematic

probabilistic framework summarized in Figure 1. Total associated risk, R, was defined

as the increased individual lifetime probability of incurring a toxic (cancer and/or

noncancer) endpoint due to TCE exposure from three pathways: direct ingestion of

TCE-contaminated groundwater, dermal absorption of TCE while showering or

bathing, and inhalation of TCE volatilized from water to household air. For volatile

organic compounds (VOCS) such as TCE, these three pathways typically are the most

significant contributors to total daily residential intake. Each route-specific TCE intake
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was converted to a corresponding biologically effective dose for each MA and toxic

endpoint considered, where this conversion was made using efficient MA-specific

forms of a human PBPK model. Route-specific effective doses were summed for each

MA to obtain (two) measures of MA-specific total effective dose (see Section 2.2). As

detailed in Section 2.4, two MAs were considered for TCE: a genotoxic MA (M&) and a

cytotoxic MA (M&), with both MAs considered potentially relevant to cancer risk

posed by TCE exposure, but only M& considered relevant to noncancer risk posed by

TCE exposure. Briefly, it was assumed that liver cytotoxicity is the most sensitive

noncancer endpoint for TCE in humans based on the most sensitive experimental

(mouse) data, that hepatotoxicity may (itself, or as the most sensitive available cytotoxic

indicator) also explain and/or contribute to TCE-induced cancer observed in animal

bioassays, and that genotoxicity may additionally explain and/or contribute to TCE-

induced cancer observed in rodent bioassays. Increased likelihoods of cancer and of

hepatotoxicity were each modeled as a MA-specific function of PBPK-based biologically

effective dose in animals. Interspecies extrapolation of pharmacokinetic differences was

obviated by consistent application of relevant PBPK models. Interspecies

pharmacodynamic differences in dose-response were extrapolated using a single

method applied to both cancer and noncancer endpoints. Intraspecies (interindividual)

variability in human dose-response was modeled identically for both cancer and

noncancer endpoints. Finally, increased risks of incurring either or both endpoints

were estimated with respect to associated JUV, and these estimates were compared to

corresponding traditional-type risk estimates obtained using deterministic methods.

The following’ subsections describe the specific methods used to apply the general

approach just summarized, with respect to route-specific TCE exposures (Section 2.2),

corresponding biologically effective doses (Section 2.3), dose-response for TCE-induced

toxicity (Section 2.4), and unified risk characterization (Section 2.5).

2.2. TCE Exposure

Predicted rates (X~,ti~,‘G,irdv and ‘G,der;‘g ‘g-l ‘-1) ‘f ‘oute-specificl lifetime ‘ime-

weighted average (LTWA) exposure to TCE due to Site LF-13 groundwater

contamination at Beale AFB were calculated from corresponding rates (I&_, Em, and

EDem) and associated JUV defined in Equations 1-3 of the Phase-1 report (Daniels et al.,
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1999). (Note that the Phase 1 report used slightly different subscript-notation.)

Specifically, it was assumed that,

xG,tig = Ehg , (la)

x G,der =E Derm I (lb)

xG,ti = (VdvR/hzh) Em , where (lC)

Ink = total respiratory ventilation rate used in Daniels et al. (2000) (m’ kg-’ d-l); and

v ‘alvr
alvR =

1000 L m-3 ‘alv

= 12.9 L h-’, (VW/kg)074-l~,v , in which:

1000 L m-
(2)

v alvR =

v ah’ =

Vw =

valv =

weight-normalized ventilation rate used in present study (m3 h-l),

non-normalized ventilation rate (L h-l),

body weight (kg), and

normalized interindividual variability in Vdv~ that is independent of
variability in Vw (unitless).

Equation 2 is an adaptation of the alveolar ventilation rate Vdw defined in a validated

PBPK model for TCE in humans (Allen and Fisher, 1993). Because, as explained in

Section 2.3, this PBPK model was integrated into the probabilistic framework used in

the present study, X~,ti was defined in terms of Vdv~ rather than the total ventilation

rate Inh used by Daniels et al. (2000).

Variability in Vw for U.S. adults was modeled as approximately lognormal (LN)

with an arithmetic mean (AM) of 71.0 kg, standard deviation (SD) of 15.9 kg, and

corresponding coefficient of variation (CV = SD/AM) of 0.224 (CalEPA, 1996; Finley et

al., 1994). Based on the method of moments (Aitchison and Brown, 1957) explained and

developed in Appendix 1, the assumed AM and SD of Vw imply that Vw - LN(4.24,

0.221).

Weight-normalized rates of total respiratory ventilation for U.S. adults are

approximately lognormally distributed with a CV of -0.3 (CalEPA, 1996). As implied

by Equation 1, the non-normalized alveolar ventilation rate Vdvr (L h-l) is approximated

as

~n = (12.9 L h-’) (Vw kg-’)43 Vdv .v (3)

18



The alveolar proportion of total lung volume was assumed to be nearly constant, and

consequently variabilityy in Valvwas modeled as LN with an AM of 1. Based on the

method of moments (Appendix 1), it follows that Vdv - LN(-O.0409, 0.286). To facilitate

PBPK analyses described in Section 2.3, it was assumed that Valv,Vdw and Vdv~ pertain

to children as well as to adults.

Predicted daily (non-LTWA) peak TCE exposures (XC,P, in mg kg-l d-l) due to Site

LF-13 groundwater contamination at Beale AFB were defined for ingestion and dermal

exposure routes as follows, in terms of X~,Pdefined above (Equations la-b) and in terms

of the constants EF and AT and the variate ED defined in Equation 1 of the Phase-1

report (Daniels et al., 2000):

Xc,tig = [AT/(EDxEF)]XGmg , and (4a)

x C,der = [A7’/(H3xEF)]xG,der , where (4b)

ED =

EF =

AT =

household exposure/residence duration used in Daniels et al. (2000) (y); ,

exposure frequency used in Daniels et al. (2000) (d y-l);

averaging time used in Daniels et al. (2000) corresponding to a 70-y exposure,..
(d).

Predicted daily peak respiratory TCE exposure, Xc,ti, was similarly related to X~,ti,

except that Em (see Equation lc) was defined by Daniels et al. (2000) to refer to total

household LTWA exposure, whereas Xcti pertains to peak respiratory TCE exposure,

which is assumed to occur during showering (and without reference to non-shower

respiratory TCE exposures). Therefore, XC,ti was modeled as follows based on the

method of Daniels et al. (2000) as adapted in Equation lc, but solely with reference to

shower-related TCE exposure:

[

‘sh @TCE-shXC,M = Vdw
)

~ Yinh
- , where

1000 L m-3 xAE,~ w 1 d

w,~ = water-usage rate per person for shower (L h-l);

km-,, = water-to-air transfer efficiency of TCE in the shower (unitless);

AE,h = air-exchange rate in the shower or bath stall (m3 h-’);

Cw = TCE concentration in ground water (mg L-l); and

(4C)
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v,;* = (ET,, x 1 d) = shower duration (h);

where variability in W,~, ka.~, AE,h, and ET,h, and uncertainty in CW,were all modeled

as previously described (Daniels et al., 2000).

2.3. Biologically Effective Dose

For reasons discussed in Section 1.3, liver was assumed to model susceptible target

tissue for TCE-induced cancer based on mouse bioassay data, and mouse hepatocellular

toxicity was used to model the most sensitive TCE-induced noncancer (but possibly

cancer-related) endpoint. Dose-response relations for TCE-induced endpoints were

treated as functions of corresponding mechanism- and route-specific measures of

biologically effective dose DW,P (mg kg-l d-l) defined below. As indicated in Figure 1,

I?BI?K and associated JUV models used to define DW,P as functions of corresponding

TCE exposures (Xw~) were treated differently in view of uncertainty as to the extent to

which the MA for TCE involves genotoxic (G) processes with a plausibly linear dose-

response vs. cytotoxic/mitogenic (C) processes with a likely nonlinear dose-response.

To facilitate subsequent calculations, the following related quantities were also

calculated:

Dm = E Dw,i ,
i={ing,inh,der}

fMJ’ = (=)/(~),

BMA,P = ‘MAp/(~) f
and

(5a)

(5b)

(5C)

where (5d)

Dm =

BM&F’=

Bm =

fm, =

Bm = ~
i={ing,irh,der)

*l(FBmi(Bm,i)=p), forOSp<l,
/

total of all Pathwav-specific biolo~icallv effective doses under mechanistic
assumption’MA (mg k~-l d-l for MA”= G, “mg/L for MA = C);

normalized biologically effective dose for pathway P under mechanistic
assumption MA (unitless);

mean value of the cumulative probability distribution functions (cdfs)
corresponding to all pathway-specific normalized biologically effective doses
under mechanistic assumption MA (unitless); and

fraction of (Dm) due to pathway P (unitless).
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The variate Bw is defined (by Equation 5d) to take advantage of the fact that MA-

specific BW,P distributions were found to be nearly identical for all pathways P in this

case study (see Results). Therefore, in calculations implementing Monte Carlo

simulations done in this study, EBW distributions were used in place of the greater

number of corresponding EDW,P distributions (see Section 2.6). The order of

(uncertainty- vs. variability) expectation operations in Equations 5a-b is arbitrary in this

case study, because the order was not found to have a substantial effect on the value of

(—)DM obtained (due principally to the linear structure and behavior of the models used

for Dm,p previously described; see Daniels et al., 2000). Consequently,

(~) = (Bw) = 1 by definition. Note also that, because of the multiplicative model

structures implied by Equations 4a-c, Bw = (Bw)l?w.

The rationale for including both genotoxic and cytotoxic MAs into this analysis is

discussed below, followed by subsections detailing PBPK models and methods used to

calculate corresponding biologically effective genotoxic and cytotoxic doses to bioassay

animals and to humans.

2.3.1. Uncertainty in mechanism of toxic action

As discussed in Section 1.3; there is fundamental “model” uncertainty regarding

critical mechanism(s) explaining the observed ability of TCE to increase tumor

incidence in rodent bioassays and its suspected ability to do the same in humans. This

uncertainty can be represented by the following four alternative mechanistic

assumptions (MAs):

Assumption 1 (MA~) is the traditional approach to assessing TCE cancer risk,
which presumes that TCE increases cancer risk only via one or more
genotoxic mechanisms of action, involving DNA damage that is linearly
proportional to the biologically effective concentration of one or more of
TCE’S reactive metabolizes (Bogen, 1988; Bogen et al., 1988; Brown et al.,
1990; USEPA, 1985,1987a).

Assumption 2 (MAC) is that observed TCE-induced (e.g., liver) cancer is due
entirely to increased net proliferation of spontaneous premalignant cells
elicited primarily by TCA, by a cytotoxic and/or perhaps a directly
mitogenic mechanism (Andersen et al., 1998; Bogen and Gold, 1997).

Assumption 3 (MA~J is the composite assumption that both genotoxic and
nongenotoxic mechanisms contribute to observed TCE carcinogenicity in
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bioassays, i.e., that both M&and M& are true. However, to the extent
M&m is true, uncertainty remains as to the quantitative role played by
each mechanism involved. This kind of uncertainty is often referred to as
“parameter” uncertainty, because it is possible to reflect this as
uncertainty pertaining to a single parameter (in a sufficiently general
model) that governs the weight to be given to each of the two mechanisms
considered to be operative under M&.c.

Assumption 4 (MA~UC)is the “dichotomous” assumption that either M&. or
M& is true, but there is “model” uncertainty as to which one of these
possibilities is true, in view of the fact that the “parameter” uncertainty
discussed above in reference to MA~mc is quantitatively equivalent to
“model” uncertainty.

In view of evidence discussed in Section 1.4 supporting the plausibility of both M&

and M&, both of these mechanistic assumptions were used to define route-specific

biologically effective dose and dose-response for TCE-induced cancer. Of course, M&

was used exclusively as the basis for calculating biologically effective dose and dose-

response for TCE-induced noncancer endpoints. Below, methods used to estimate

biologically effective doses corresponding to mechanisms M& and M& are described,

following an explanation of the PBPK modeling approach that was adopted in this

study to accommodate both mechanisms.

2.3.2. PBPK modeling approach

A number of multi-compartment PBPK models have been developed that provide

reasonably well-validated descriptions of the uptake, distribution, metabolism, and

excretion of TCE administered by various routes to mice, rats and humans (Abbas and

Fisher, 1997; Allen and Fisher, 1993; Bogen, 1988; Fisher and Allen, 1993; Fisher et al.,

1991,1998; Stenner et al., 1998; USEPA, 1985, 1987b). In contrast to earlier PBPK models

describing TCE distribution, metabolism and excretion using four physiological

compartments, the more recent “second generation” models include additional

compartments to describe distribution, metabolism and excretion of TCA and of

unbound and glucuronide-bound trichloroethanol in mice and humans (Abbas and

Fisher, 1997; Fisher et al., 1998), and to account for enterohepatic recirculation of TCA

and of trichloroethanol-glucuronide (Stenner et al., 1998). Although the newer PBPK

models are more realistic, they are less convenient to incorporate into the adopted

probabilistic framework relative to earlier-type 4-compartment models. It is also not

apparent that any improved ability to fit empirical data used to validate the newer vs.
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the earlier models implies any corresponding substantial improvement in the specific

measures of biologically effective dose discussed below, namely, total metabolized TCE

and peak plasma concentration of TCA. Indeed, an earlier-type 4-compartment model

for TCE in humans appears to provide fairly accurate predictions of the peak value,

Max(C~m), of TCA concentration in plasma measured in several different studies

involving humans exposed by inhalation to various air concentrations of TCE (Allen

and Fisher, 1993), whereas a corresponding “second generation” model appears to

underpredict Max(C~CA)by up to -40Y0 in human subjects exposed to 50 or 100 ppm

TCE in air (Figure 8 of Stenner et al., 1998). Therefore, earlier-type 4-compartment

models (Allen and Fisher, 1993; Bogen, 1988) were used for l?BPK-based calculations of

biologically effective dose in the present study, as described below. However, recently

reported experimental data on human variability in key PBI?K parameter values (Fisher

et al., 1998; Lipscomb et al., 1998) was incorporated into the present analysis as

discussed below.

2.3.3. Effective genotoxic dose

Under M& for TCE (i.e., assuming that TCE is a “linear’’/genotoxic carcinogen),

bioassay-based potency traditionally has been expressed as increased risk per unit of

l?BPK-estimated total LTWA metabolized TCE per kg body weight per day, without

accounting for PBPK-related uncertainty and variability (Bogen, 1988; Brown et al.,

1990; USEPA, 1985, 1987b). There is an indication this policy will likely persist (USEPA,

1996). Measures of biologically effective dose, as LTWA metabolized TCE in mg kg-’ d-’

to animals in bioassays positive for TCE-induced liver or kidney cancer, were obtained

from Table 4 of Bogen (1988). Similar measures of route-specific biologically effective

dose D~,Pto humans under M& were used for the present analysis, namely:

DG,l? = v~,p x~,, , for P = ing, inh, or der, where (6)

v fm,P = limiting fraction of total TCE intake by pathway P that is metabolized
conditional on intake being sufficiently small to ensure that saturation of TCE
metabolism remains negligible (unitless).

For multi-compartment PBPK models like that of Allen and Fischer (1993), these

limiting metabolized fractions were shown previously to be
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v..g=[l+&+#--],ard

Vh;d = vfm,&r = [’+k(%l+il’‘where

(7a)

(7b)

v ah = alveolar ventilation rate (defined in Equations 2 and 3) (L h-l);

Vtiv = the rate of blood perfusion to liver (L h-l);

v- = the blood: air partition coefficient for TCE (Lti L-~,OO,);

v – maximum rate of TCE metabolism (mg h-l);max —

Km = Michaelis-Menten affinity/saturation constant (mg L-l); and’

where Vdw is alveolar ventilation rate defined above (Equation 3), and where, for

Michaelis-Menten parameters Km and VmaXassumed to govern metabolic saturation

kinetics for TCE, the mass unit (mg) refers to TCE and the volume (L) to venous blood

exiting liver (Bogen, 1988; Bogen and Hall, 1989).

To derive human biologically effective doses under M& (as well as under M&, as

explained below), Equations 7a-b were applied assuming: Valvr is defined by

Equation 2, Vfiv= 26%x(15 .0/12.9)xVa1v (Allen and Fisher, 1993), Km = 1.5 mg L-’ (i.%

treated as a constant) (Allen and Fisher, 1993), and that Vpb - N(10.2, 1.6) for males and

females combined (Fisher et al., 1998). Variability in the maximal rate of TCE

metabolism, Vm=, was modeled as LN with

v max = (14.9 mg h-l) (Vw kg-l)a3 Vvmm , (8)

which adapts the definition used by Allen and Fisher (1993) to incorporate a

multiplicative factor Vvmm reflecting Vm=-related variability, where Vvm= was assumed

to have an AM of 1. Under these assurnptions, Equations 7a-b are simplified to:

‘fro% = {1 + ~v[vV~107700~b+20547J]1~ , and

‘h@= ‘hda= [l+t’[=+30307)r ~

(9a)

(9b)

24



in which no more than three significant figures are implied. From Equation 9b it is clear

that Vh,ti is correlated with Vdv. From Equation lc, it follows that this correlation is

implied in Equation 6 defining D~,ti, as well as in Equation 15b below (in Section 2.3.4)

that defines the corresponding cytotoxic dose Dc,ifi. Note, however, that the limiting

metabolized fractions defined by Equations 9a-b are independent of body weight (Vw),

and thus are independent of DW,P for P = {ing, der} defined by Equation 6 (and by

Equations 15a-b below).

Based on in vitro measures of Vm.x for TCE using human microsomes and

hepatocytes sampled from 4 to 6 different donors (Lipscomb et al., 1998), the CV of Vmw

was estimated to be approximately 0.60. Based on the method of moments

(Appendix 1), and conditional on assumed variability in Vw discussed above (after

Equation 2), the latter CV estimate implies that V’m=- LN(-O.152, 0.551). Systematic

uncertainties pertaining to Vfm,pare likely to be small relative to the combined effect of

interindividual pharmacokinetic variabilities, so uncertainty per se is not incorporated

into Equations 9a-b used to define Vfmy.

Note that, conditional on the adopted PBI?K model, Equations 7a-b and 9a-b remain

true regardless of any (dynamic or static) pattern of exposure(s) involved, provided that

metabolism remains virtually unsaturated, which in turn ensures that the

corresponding system of linked ordinary differential equations remains linear (Bogen,

1988; Bogen and Spear, 1987).

2.3.4. Effective cytotoxic dose

Under M& for TCE, hepatocellular oxidative damage is assumed to comprise or

elicit premalignant liver-cell proliferation and consequent increased tumor risk in mice,

and is further assumed to correlate best with the daily peak value Max(C~m), of TCA

concentration in plasma, rather than with LTWA total metabolized TCE or related areas

under concentration-times-time curves for blood or other tissues (Bogen and Gold,

1997). Similar reliance on peak rather than LTWA metabolic yield was used for

M&-based risk assessment for chlorinated methanes, based on empirical evidence

supporting the former measure as the best predictor of oxidative damage (Bogen,

1990a). In the absence of dose-response data on TCA-induced rodent nephrotoxicity,

and consistent with information discussed in Section 2.4, Max(C~~ was also taken to be

25



the biologically effective cytotoxic dose for potential TCE-induced kidney cancer under

M&. It was further assumed that Max(C,cA) is the biologically effective cytotoxic dose

for TCE-induced noncancer endpoints, so in general it was assumed that DC,Pfor any

exposure pathway P is the value of Max(C~~) produced in response to a corresponding

exposure XC,Pdefined in Equation 4a-c. Corresponding total effective dose (Dc) was (in

Equation 5a) defined as the sum of DC,Pfrom all exposure pathways, as discussed below

following Equation 13b.

In the context of low-dose risk extrapolation for humans based on the PBPK model

for TCE used here, all saturable (Michaelis-Menten) PBPK relations linearize.

Therefore, this PBPK model was evaluated using an entirely analytic approach

previously described (Bogen and Gold, 1997), which is simpler yet equivalent to

alternative, relatively cumbersome numerical methods more commonly applied. By

this approach (see Equation 4 of Bogen and Gold, 1997),

‘w~d (~.E(t)+F.)-LecTcA(’)f ‘here
dCTCA(t) = KflCAKMW CT~(t) V

dt
(lo)

C~m(t)= concentration at time t of TCA in plasma (mg L-’);

CTc~(t)= concentration at time t of TCE in venous blood exiting liver (mg L-l);

K*U = net effective fraction of total TCE intake metabolized to TCA (unitless);

Km = TCA to TCE molecular-weight ratio (unitless); and

Vfd = fraction of body weight corresponding to apparent volume of distribution for
TCA (L kg-l); and

Vke = first-order rate constant for elimination of TCA from plasma (h-’);

and where Vw, VmaX,and Km were defined above (after Equations 2, 7b, and 7%,

respectively). It was assumed that KflcA = 0.33 (Allen and Fisher, 1993), and the ratio

Km is 1.228 (see Bogen and Gold, 1997).

Conditional on any regular pattern of peak daily TCE exposures XC,Pthat—by any

pathway P and corresponding duration V,,P—are small enough to ensure that C~c~(t) <C

Km for all t,Equation 10 implies that c.~(t) attains a dynamic equilibrium in which

K~c- K V [1fi.Max[C~m(t)] = DCY =
MWfm.p(Xc,p X 1d) ~

~d~.
, where (11)

t,P
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1- exP(–ue Y,P)
~de~ = ~ _ exp(–~e X 24 h) (12)

V,,p = duration (< 24 h) of peak daily exposure Xc,p by pathway P (h); and

fdeq = fraction of Max[C~w(t)] conditional on a hypothetical infinite exposure
duration that is attained at dynamic equilibrium conditional on Vt,P;

in which X ~,P and Vt,inh were defined via Equations 4a-c, Vfm,p was defined in

Equations 9a-b, and all other variates in Equations 11-12 (i.e., besides-f& V,,P,and Xc,P)

were defined following Equation 10. Equation 11 is a multi-route generalization of

Equations 6 and 7 of Bogen and Gold

Equation 11 is well approximated by

(1997). Figure 2 shows how the bracketed term in

[~.aJY,P] = (24@-’+ 0.5053v’h + (1.661h)Kt

for V,,P<0.5 h and Vk, <0.1 h-l (13a)

= (24h)-’ + 0.5053 V,, for V,,ps 0.5 h and Vk, <0.04 h-l , (13b)

in which no more than three significant figures are implied.

As indicated following Equation 4c, variability in Vf,fi was modeled as LN with

V,,fi -LN(ln 0.120, In 1.47) as previously described (Daniels et al., 2000), implying

shower (or, more generally, bathing-related water-flow) durations that virtually never

(p< 10-’1) exceed 0.5 h. It was further assumed that V,,,,, = V,,ti as previously described

(Daniels et al., 2000), that V,,ti, <0.5 h, and that V,jm~,Vf,ti, and V,,.,, are timed such that

the total effective cytotoxic exposure, D= (defined by Equation 5a), is maximized, so as

to reflect the peak value of Max[C~m(t)] predicted during a lifetime of different

pathway-specific effective-exposure scenarios.

Based on methods used and data reported by Allen and Fisher (1993), variability in

Vfd was modeled as uniformly distributed between 5.2 and 15.2Y0, and as being

negatively correlated with Vw with a rank correlation coefficient of Pr(V~d,V~)= -0.50;

and it was assumed that

v~e = 0.028 V;3 ~ , where (14)

V, = normalized variability in Vke that is independent of variability in Vw (unitless),
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Figure2. Approxtiation of theratio Z=~~,~/V,Y), i.e., tie fraction ofsteady-state that
is attained under dynamic-equilibrium exposure conditions, divided by the duration
V,,r of daily exposure pulses. Z (unitless) is plotted (using open points) as a function of
40 values of the (heterogeneous) TCA-elimination rate, Vk,, evenly spaced between O
and 0.1 h-l. The relatively small amount of vertical variation in the plotted points
corresponds to three different values of Vfr used (0.01, 0.25, and 0.5 h) conditional on
each value of Vk, used. To these points was fitted the linear quadratic curve showm
Z = (0.05053 h)V~, + (1.6608 h2)V~~. For Vk, <0.04 h-l, the relative error of this fit using
only the linear term (0.05053 h) is <5!4.
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and where Vw was previously defined (after Equation 2). It was further assumed that

variability in Vk, is lognormally distributed. Experimental data reported for 17 male

and female human subjects indicates that Vk, has a CV of -0.60 (Fisher et al., 1998).

Based on the method of moments (Appendix 1; see discussion concerning Vmax

following Equation 8), it follows that V. has an AM of 1 and that V, - LN(-O.152, 0.551).

Consequently, Equation 14 implies that Vk, <0.030 h-’ for virtually (>99% of) all

modeled individuals at risk. Because Vf,ti~e 0.5 h is assumed as described above,

Approximation 13b is accurate (to within c2.5Yo), and was thus used to evaluate

Equation 11. These two equations, together with assumptions stated above, yield:

D
(

(Xc, xld)+ ‘“61:VYC,P = ,
)

+ 0.2074 , for 1?= {ing, der}, and (15a)
fd e

‘C,inh = (xC,inhx 1 ‘)

*K?+?) ~

(15b)

in which no more than three significant digits are implied, and where: Xc,p for

pathways P = {ing, inh, or der} were defined by Equations la-c, Vw was defined after

Equation 2, Vfm,pfor pathways P were defined in Equations 9a-b, Vf~ was defined after

Equation 10, and V, was defined after Equation 14. Note that Vfd and Vw are assumed

to be correlated (as discussed prior to Equation 14), as are V,lv and Vfi as discussed

above (in Section 2.3.3, after Equation 9b).

2.4. TCE Dose-Response

The following subsections discuss methods used to model dose-response for TCE-

induced cancer and noncancer endpoints, and associated JUV. Sections 2.4.1 and 2.4.2

describe methods used for dose-response modeling under M& and ~ respectively.

Section 2.4.3 then describes the method used to incorporate uncertainty concerning the

mechanism of action for TCE-induced cancer into estimates of cancer risk as well as of

corresponding aggregate (cancer and noncancer) risk.

2.4.1. Dose-response assuming genotoxic mechanism(s)

Under M&., linear-no-threshold extrapolation of TCE cancer risk is based on the

assumption that TCE can increase cancer risk via one or more genotoxic mechanisms of

29



action. These mechanisms involve DNA damage that is presumed to be linearly

proportional to the biologically effective concentration of one or more of TCE’S reactive

metabolizes, where potency is estimated for each bioassay in terms of a

pharmacologically based equivalent effective dose-namely, the total amount of TCE

metabolized per kg body weight per day (Bogen, 1988; USEPA, 1985, 1987%). Effective

bioassay doses Dc,r and corresponding positive, malignant (plus, where applicable,

benign) tumor responses in mouse liver and rat kidney were obtained from information

listed in Table 4 of Bogen (1988) concerning seven rodent bioassay data sets (Bell et al.,

1978; Maltoni et al., 1986; NCI, 1976; NTP, 1990). The studies involved are summarized

below in Table 1. For each data set, a cdf reflecting uncertainty (estimation-error) in

estimated cancer potency (i.e., “slope factor”, or risk per unit dose), here denoted UPO~

(kg d mg-’), was calculated as described below (Section 2.6).

A subjective weighting scheme-was then used to address uncertainty associated

with lack of knowledge concerning which of the multiple positive animal bioassay

results for TCE in rodent liver and kidney best predicts TCE cancer risk in humans,

similar to an approach previously applied to characterize JUV in cancer risk posed by

environmental exposure to chloroform (Bogen, 1995). To each species/sex-specific

potency distribution obtained as described above, the corresponding relative weight

indicated in Table 1 was applied to obtain a single weighted-average distribution

reflecting uncertainty in tumor likelihood, conditional on effective dose. (This weighted

average was obtained analytically, via calculations analogous to those indicated in

Equation 5d.) The weights used assign equal likelihood (of reflecting true carcinogenic

potency in humans) to bioassay data sets that differ: by sex within a given strain, by

strain within a given species, and by species.

Animal-to-human extrapolation of toxicokinetically equivalent effective dose was

done by using an appropriate PBPK model as described above, so no additional factor

was employed in this regard in accordance with currently proposed policy (see

Section 1.4). An uncertain factor U~~Ynwas used to account for interspecies

toxicodynamic dynamic differences between rodents and humans (i.e., in increased

likelihood of cancer per unit effective genotoxic dose). Analogous to toxicodynamic

factors recommended recently by the USEPA for noncarcinogens and “nonlinear”
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Table 1. Bioassay data sets used to estimate potency of TCE as a genotoxic/linear liver
or kidney carcinogen

No. Relative
Tumor dose study

No. Study Species Strain Sex Routeb type’ grps. weight’

1 NCI (1976) mouse B6C3F1 M gav HCC 3 1

2 NCI (1976) mouse B6C3F1 F gav HCC 3 1.5 I
3 NTP (1990) mouse B6C3F1 M gav HCA 2 1 I
4 NTP (1990) mouse B6C3F1 F gav HCA 2 1.5 I
5 NTP (1990) rat F344 M gav RTCA 3 12 I
6 Bellet al. (1978) mouse B6C3F1 M inh HCA 3 1 I

/7 Maltoniet al. (1986) mouse Swiss M inh 3 61
!Moredetailedstudy-specificinformationappearsin Table4 of Bogen(1988).
bLifetimebioassay exposure scenarios: gav = gavage 5 d/wk in oil vehicle; inh = inhalation 6 h/d,
5 d/wk. Tumor types: HCC = hepatocellular carcinomas;HCA = HCC or hepatocellular adenomas;
RTCA= renal tubule-cellcarcinomasor adenomas;MH= malignanthepatomas.

‘Assigneda priori relativestudyweight(seetext).

carcinogens (USEPA, 1998), but using a probabilistic approach as previously proposed

for noncancer endpoints (Carlson-Lynch et al., 1999; Slob and Pieters, 1998), it was

assumed Z.I~~Pis lognormally distributed, has a GM of 1 (i.e., is as likely as not to exceed

1), and is unlikely (p c 0.01) to exceed a value of 3. A similar factor V,~P used to reflect

intraspecies toxicodynamic variation was assumed to have an AM of 1 and to be

unlikely (p e 0.01) to exceed 10. By the method of moments (Appendix 1), it thus was

assumed that Z.I~~W- LN(O, 1.60) and V,dp - LN(O.700, 2.33).

Combining the dose-response factors discussed above, and noting that V,~P = 1,

increased risk R~ under M& was defined using a low-dose-linear multistage risk-

extrapolation model as

{[
& = l-exp- 1}‘pOt”tdwYdP(~G) Z ~G,PBG,P J

P={ing,inh,der)

x= 1 – ‘xP(–up.tutdy. (Z)z) ,

(%) = { [ )(”tdw)~dw(=)p={iZ~:(BG.p~1 – exp – (Upot

with (16a)

and (16b)

(16c)
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~~w,and Vt~P were defined above in this subsection, and the remainingin which UPO~,U

variates were defined in/after Equations 5a-b with reference to Equation 6. In

Approximation 16b, ~ = B~,P because (conditional on Equations la-c, on Equation 6,

and on all heterogeneous variates involved in I&), uncertainty in I?c,Pis due entirely to

uncertainty in the variates ED and CW(defined after Equations 4b and 4c, respectively)

that are both independent of pathway I’. Note that the (B~,P) variates in ApprOXfiatiOn

16c are correlated (see Section 2.6). Approximations 16b-c are lst-order approximations

(see Bogen and Spear, 1987). However, for extrapolation of risks C10-2 the functions

involved are effectively linear, so the approximations entail only negligible loss of

accuracy.

2.4.2. Dose-response assuming cytotoxic mechanism(s)

The ability of TCE to induce cancer under M& was assumed to arise from TCA-

induced cytotoxicity/mitogenicity indicated by increased formation of thiobarbituric-

acid-reactive substances (TBARS), as previously suggested (Bogen and Gold, 1997).

Absent better data, increased TBARS elevation above background was modeled using

data on male B6C3F1 mice administered a single gavage dose of O, 100, 300, 1000, or

2000 mg TCA per kg body weight in buffered water, and corresponding measured peak

TCA concentrations in plasma, Max(C~cA) (Larson and Bull, 1992a). Multiple

independent interactions are likely to be involved in TCA-induced oxidative-stress.

Consequently (Aitchison and Brown, 1957), dose-response under M& could reasonably

be modeled using a two-parameter LN function

( )Y(AC) - YO = 100@ log’o($) - p , in which (17)

Ac = administered acute TCA dose (mg TCA per kg body weight);

Y(AJ= TBARS level (nmol malondialdehyde equiv. per g liver) induced by Ad

Y, = Y(0) = background TBARS level (nmol malondialdehyde equiv. per g liver);

CT?(Z)= cumulative probability distribution function (calf) of a standard normal
(Gaussian) random variate Z, equal to Prob(Z <z);

P = location parameter= loglOGM (unitless); and

o = shape parameter = loglOGSD (unitless);
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to the mouse TBARS-VS.-AC data (see Section 2.6), where the unit of Y(AJ is henceforth

suppressed for convenience. The arbitrary constant (100) in the two-parameter model

(Equation 16) was used because a three-parameter LN model fit to these data did not

yield plausibly unique parameter estimates.

, Raw Y(AC)-VS.-AC data ([4 measures]x[4 noncontrol dose levels]) summarized by

Larson and Bull (1992a) were assumed to be approximately normally distributed, with a

reported arithmetic mean (AM) and standard deviation (SD) for YOof 40.0 and 4.0 runol

malondialdehyde equiv. per g liver, respectively. Error in this AM was modeled as t-

distributed with 3 degrees of freedom. TBARS elevations above the corresponding 2-

tail upper 95% confidence limit on YOwere assumed to be biologically significant in the

sense of being plausibly related to TCA-induced cytotoxicity. This upper bound on Y.

shall be denoted Y,i~, and the mouse data indicate that Y,i~= 49.4 nmol

malondialdehyde equiv. per g liver. Estimates {~, &} of the LN parameters {p, o}, as

well as their corresponding estimated SDS { SP, S6} and product-moment correlation (r),

were obtained by fitting the LN-model (Equation 17) to the mouse TBARS data, as

described below (Section 2.6).

Parameter-estimation error pertaining to the likelihood that any particular acute

administered dose AC would induce a significantly elevated (i.e., presumptively

cytotoxic) response was characterized by simulating uncertainty in parameters p and o.

This was done by modeling these parameters as the corresponding variates

P = ~ + S1% and a= b + SaUti, where 11~1and Z.Iflare correlated uncertain variates

each distributed as Student’s T with [(4 x 4) – 2] = 14 degrees of freedom, having a

correlation coefficient equal to r. At the lowest AC level used (100 mg kg-l) in B6C3F1

mice, it was found that effective dose, expressed as the corresponding maximum

plasma TCA concentration (D=,), was DC. = Max(C,cJ = 130 mg L-’ (Larson and Bull,

1992a). FoLconvenience, and absent data at lower Dc, levels, it was assumed that the

ratio DCJAC is a constant independent of A=, equal to [(130 mg L-l)/(lOO mg kg-l)] =

1.3 kg L-l. Critical effective dose conditional on {p, O}was therefore modeled as
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Dca =

=

Dca =

Y,ig =

Uti =

‘C(DCa) =

where YO,

(1.3 mg L-’) 10
# +ffo-’[(Y.,-Y,)/100]

(1.3 mg L-l) 10(~+SLU”)+ ‘&+S’U’2)o-’[(y’g-y0)l’M] - FC(DJ , where (18)

acute effective TCA dose (mg TCA per L plasma);

significantly elevated value of Y(AJ above YO(defined above);

(for i=l,2) correlated errors distributed as Student’s T cdfs with df = 14; and

cdf of Dca, specifying the modeled likelihood of significant TBARS elevation
conditional on effective dose DG;

~, Sj, 8, and Sd, as well as the t-distributed variates Utl and Z-IQ,were all

defined above, and where “-” means “is distributed as”. Absent dose-response data on

TCA-induced lipoperoxidation or cytotoxicity in rat kidney, it was assumed that Fc(D~

also applies to rat kidney. This assumption is probably conservative, because relation

between Ac and Dc. = Max(C~cJ was observed to be similar in rats vs. mice, whereas

TCA is less effective at inducing TBARS elevation in rats vs. mice (Larson and Bull,

1992a).

Detailed dose-response information relating chronically or subchronically

administered TCA and induced TBARS or cytotoxicity are still unavailable. Therefore,

extrapolation of DC. to equivalent subchronic effective TCA dose, and extrapolation of

subchronic to chronic effective TCA dose (where the latter is denoted Dc, and is defined

by Equations 5a, 11, and 15a-b), was accomplished using the two uncertainty factors,

uacuteand U,ubtion,respectively. As previously suggested (Slob and Pieters, 1998), these

factors were assumed to be lognormally distributed. Based on the observation that ratio

of lowest observed effect levels for TCE-induced lethality in B6C3F1 mice is between 2

and 3 (NCI, 1976), it was assumed that UaCUtehas a GM of GMaCU~e= 3 and is unlikely

(p< 0.01) to be greater than 6. The factor U,UbmO.was assumed by default (see Slob and

Pieters, 1998) to have a GM of G~ubCtiO. –– -2 and to be unlikely (p < 0.01) to exceed 10.

Because many repeated daily exposures to TCE and/or its metabolize TCA are expected

to be always more (never less) toxic than fewer exposures, it was assumed that a

combined uncertainty factor (UmOJ extrapolates effective dose from a chronic to a

toxicologically equivalent acute (bioassay) exposure condition as follows:
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DC, = (1+ LIhOJDc , where (19a)

uchron= )U.m,, X U,ubhO. (1 – (GM.m@M,UbtiO.)-l . (19b)

That is, the combined LN factor UhO~ was assumed to have a GSD equal to that of

Uam,,x Ll,Ub&o.and a GM equal to one less than that of U,aw x U,.btio.. By the method of

moments (Appendix 1), it was thus assumed that Ution - LN(ln 5, In 2.12).

Animal-to-human extrapolation of toxicokinetically equivalent effective dose was

done by using an appropriate PBI?K model as described above, so no additional factor

was employed in this regard in accordance with currently proposed policy (see

Section 1.4). An uncertain factor U,~Yn was used to account for interspecies

toxicodynamic dynamic differences between rodents and humans, and a similar factor

Vt~P to reflect intraspecies toxicodynamic variation, where Z&w and Vt~Wwere defkd

above (in Section 2.4.1, prior to Equation 16).

Combining the dose-response factors discussed above, , and again noting that

v~~w= 1, increased risk R= under M&was modeled as

RC =
[ )

‘C ‘tdyn~dyn(1+ ‘chron) (~) ~~C,PBC,P J with (20a)
P={ing,inh,der)

~1 = ‘C(”tdyn(l + ‘chron) (q q , and (20b)

(Q =
1 ( )~(“tdy.)~dp(l+(u.~o.))(~) xf&(BCP), (20C)

P={ing,inh,der}

in which U&on, Utdyn, and ‘tdyn were defined above in this subsection; the remaining

variates were defined in/after Equations 5a-c with reference to Equations 11 and

15a-b. In Approximation 20b, ~ = BC,Pbecause (conditional on Equations la-c and 15a-

b, and on all heterogeneous variates involved in E&) uncertainty in BC,Pis due entirely

to uncertainty in the variate CW (defined after Equation 4c), which in turn is

independent of pathway P. Note that the (Bc p) variates in Approximation 20c are

correlated (see Section 2.6).

The subscripts “1” on the left side of Equations 20b-c each denote a lst-order

approximation, as was the case in Approximations 16b-c. However, Equations 20b-c
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are expected to underestimate risk, because (in contrast to the exponentiated

polynomial in Approximations 16b-c) Fc is a substantially nonlinear increasing function

of effective dose (see Bogen and Spear, 1987). In the risk range from 10-10to 10-2 relevant

to this analysis, log(FC(DCJ) turns out to be well modeled by a linear-quadratic function

of effective dose De., as explained below (Sections 2.6 and 3.2). Therefore, more

accurate, corresponding 2nd-order approximations were used to evaluate R c

expectations, which were calculated as follows. For any risk R that is a function of a

vector of n uncertain and/or heterogeneous variates X = {Xl, X2, . . .. X.}, the 2nd-order

approximation of the expectation ER(X)—with respect only to variability, or only to

uncertainty-of R, is given by (cf. Bogen and Spear, 1987):

in which subscripts “l” and “2” on E denote

/ (21)

the order of approximate expectation,

() s ks n, k = fie she of the subset of X comprising all members of X that are variates of

the type corresponding to expectation E (e.g., comprising all uncertain variates among

X if E represents expectation with respect only to uncertainty in R(X)), c? denotes the

variance of the a-subscripted variate with respect to its uncertainty or to its variability

(again corresponding to how E is defined), and the second derivatives are all evaluated

conditional on X = EX. Using Equation 21, second-order approximations were obtained

to estimate conditional risks under M& corresponding to Equations 20b-c (see

Section 2.6).

2.4.3. Model Uncertainty

In view of the plausibility of both M& and M& (see Section 1.3), uncertainty in the

mechanism(s) of carcinogenic action for TCE was treated quantitatively, based on the

“dichotomous” mechanistic assumption (MA~ti) involving both MA~ and MAC

discussed above (Section 2.3). The alternative corresponding “composite” assumption

(MAcnc), which also involves both M& and M& (as discussed in Section 2.3), is more

difficult to implement quantitatively than M&ti. hl&.C is more difficult to implement

because it requires a complete model structure accounting for possible but unknown

interactions between the different mechanisms considered. k contrast, & may be

implemented simply by assigning the component assumptions (MA~ and M&)
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corresponding, complementary a priori probabilities, and using the combination of these

probabilities to reflect the (quantitatively equivalent) possibility that both M& and

M& are true but to unknown degrees. M&ti was therefore adopted using subjective

probabilities Z& and Uc = (1-LQ to reflect the corresponding likelihoods that M& and

M&, respectively, reflect the “true” mechanism of TCE-induced carcinogenic action.

Consistent with our considered opinion that MAC is at least as likely as not to explain

observed TCE-induced cancer in rodent bioassays (see also Bogen and Gold, 1997), l-.l~

was modeled as uniformly distributed between Oand 0.5. Therefore, using de Morgan’s

rule (see Appendix I in NRC, 1994), increased aggregate risk R of incurring either

genotoxicity-induced cancer, or cytotoxicity (which, in the case of TCE, may indirectly

increase cancer risk), due to TCE exposure at Site LF-13 was modeled as

R = 1 – (1 – U&)(l – FQ , (22)

in which UG was just defined; I& and Rc were defined by Equations 16a and 20a,

respectively; and correlations between R= and R= were incorporated (see Section 2.6).

2.5. Risk Characterization

Increased health risk and related JUV associated with residential exposure to TCE

from ground water at Site LF-13 on Beale Air Force Base in California was characterized

quantitatively using notation similar to those used in the Phase-l report (Daniels et al.,

2000). Specifically, increased individual risk R defined by Equation 22 was evaluated

using established methods (Bogen, 1995; Bogen and Spear, 1987; NRC, 1994) to obtain

mean and upper-bound values of the conditional expectations ~ and (R), where the

cdf for ~ represents uncertainty in risk to a (hypothetical) person at a

population-average level of risk relative to others, and the cdf of (R) represents

interindividual variability in the expected values of risk predicted for different people.

A subscript p (O< p <1) on either of these conditional expectations is used to denote a

100pth percentile at which the corresponding cdf is evaluated, while RU,O(O< u <1,

Os v < 1) is used to denote joint 100uth-uncertainty and 100vth-variability percentiles

with respect to JUV in R. Estimates of RU,Vwere obtained jointly conditional on one of

three upper bounds u (0.50, 0.95 or 0.99) with respect to aggregate uncertainty, and on

one upper bound (v = 0.99) with respect to aggregate variability. These RU,Vestimators
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characterize median and upper uncertainty bounds on risk to a person who is relatively

highly at risk compared to others at risk.

The JUV-explicit estimators of individual risk obtained (involving ~, (R), and RU,U)

were compared to traditional point-estimates of risk ~m~ and fifi@ taken from Daniels

et al. (2000). The i ~~ estimate was calculated entirely analytically, using regulatory

default values for all input variates where available; where default values were not.

available, expected values were used for all uncertain variates, and upper/unlikely

bounds (e.g., 95* percentile values) were used for all heterogeneous variates. The fi~~

estimate was similarly calculated using only upper/unlikely bounds for all input

variates.

Also of potential interest to stakeholders and decision makers are corresponding

estimates of population risk, that is, of the uncertain total number N of additional cases

of TCE-induced cancer or noncahcer associated with population exposure to risk R. For

an exposed population of total size n, N has an expected value of (N)= rz(~), and the

probability pOthat there will be zero additional cases (and consequently zero health

benefit from efforts to reduce 1?) is well approximated by the integral of the conditional

Poisson likelihood function

(23)

in which fR(r) is probability density function of the uncertain conditional expectation

~referred to above (in reference to R defined by Equation 22), and the compound-

Poisson rate (n ~ ) incorporates this same conditional expectation (see Bogen and Spear,

1987; NRC, 1994; Bogen, 1995).

2.6. Data Analysis and Computation

Uncertain cancer potency UPO,for each animal-bioassay data set was calculated

using a computationally efficient, non-asymptotic, analytic-bootstrap method

previously described (Bogen, 1994). Briefly, potency was estimated for each bioassay

data set

effective

using least-squares polynomial-regression

bioassay dose D~ to 500 simulated values of
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tumor-occurrence rates P(DG) at each level of D~ used, and under the constraint that all

fitted polynomial coefficients are nonnegative. The polynomial degree was specified in

the usual way, as previously described (Anderson et al., 1983). Uncertainty in UPO~

reflected by each data set was then modeled as the empirical distribution corresponding

to the 500 resulting fitted values of potency, defined as the linear coefficient in dose.

Estimated parameter and asymptotic SD values were obtained for a lognormal

model (Equation 17) fit to mouse TBARS-VS.-AC data by Levenberg-Marquardt

minimization of X2, the sum of weighted squared deviations of observed from predicted

values; corresponding goodness-of-fit was assessed as l?rob(X2 > ~z) for Z* distributed as

chi-square with degrees of freedom (df) equal to the number of data points minus the

number of estimated parameters (Press et al., 1992). The weight used for each Ac level

was the corresponding value S-2,where s = the SD of raw TBARS measures calculated

from the SD of the corresponding mean TBARS value reported by (Larson and Bull,

1992a).

Equation 18 was evaluated numerically in order to calculate the risk of cytotoxic

response, FC(D~~), as a function of DC. over the interval () < FC(DC,) S 1. This numerical

evaluation made use of the fact that the exponentiated expression in Equation 18

involving U~l and Z.Iarepresents a linear function of correlated t-distributed variates,

namely: w~ + Wlutl + W2UQ, where W~= B + &{@-l[(Y,i~–Y~)/l OO]}/ ‘1 = ‘jj,,

W2= Sd{@-l[(Y,i~_Yo)/100] }, and a correlation r is assumed between Utl and UU. Exact

and corresponding approximate expressions are available for the distribution of linear

functions of independent t-distributed variates (Ruben, 1960; Patil, 1965; Ghosh, 1975;

Walker and Saw, 1978; Chaubey and Mudholkar, 1982; Ojo, 1988; Singh, 1990), but not

for correlated t-distributed variates. The distribution of any linear function of

correlated t-distributed variates is derived in Appendix 2. In particular, the weighted

sum of two t-distributed variates U~l and L& with correlation r and with degrees of

freedomjl and\2, respectively, is given by:

F(v) = J: Prob( Tfl+f2 < v@(x)) [d~(x,f~,f2~)/dx] dx , where,

(i+(x)=
~+ fi)x(l-x)

fi(l-x)w~ +fixw~ +2rw1wz.J- ‘

(24a)

(24b)
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and where in Equation 24a, Tfi+fz denotes a Student’s f-distributed variate with ~1+\2

degrees of freedom, and ~ denotes the incomplete beta-function ratio corresponding to

the specified arguments (see Abbreviations and Notation). To approximate FC(DQ) over

relevant risk range (-10-10 to -10-2), the linear-quadratic function Loglo(risk) = a+bx+c~

was fit by unweighed least squares to points on FC(DC,) calculated within this risk

range, where x = Loglo(Dc.). The following second-order approximation was then

obtained using Equation 21 (in Section 2.4) to estimate corresponding conditional risks

under M& (see Appendix 3.H, pp. H-9 to H-10):

E& = El% + :17’+’’(a+b(b-l) +2cL[2(b+cL)-l])(y;, +722) . (25)

Equations 20b and 21 imply, in particular, that ~ is estimated by Equation 25 in which:

E denotes expectation with respect to variability only; a, b, and c are the linear-quadratic
— —

coefficients defined above; H= KUV1V2; K = (Dc); U = ~~dv(1 + U*O. ) Bc; VI = Vtdyn;

V2 = (Bc); A = 2c/ln10 (wherein denotes natural logarithm); L = log1017; yx = (@EX) =

the coefficient of variation of the subscripted variate X; Xl = VI; and Xz = V2. Likewise,

Equations 20c and 21 imply that (~) is estimated by Equation 25 in which: E denotes

expectation with respect to uncertain y only; H= [KVUI( z Ui )] for i = {ing, inh, der};
i

v = vtdp(Bc);U* = ~,dp(l+U&on);‘i =~c,i~; L = logloH; K, A and y were defined

above; Xl = Z.Il;and Xz = ~ Ui for i = {ing, inh, der}, noting that EXI = EX2 = 1 and that
i

02 =()X.2 ~f;,i ‘~”
Equation 24 was evaluated taking all moments with respect to the

same distributed characteristic (i.e., uncertainty or variability, corresponding to E as

defined above), using estimates for a, b, and c, and for indicated variate moments, that

are implied by assumptions used (see Appendix 1) or are reported in Results (Section

3).

Monte-Carlo methods were used to generate sample values for each of (say, k)

distributed variates involved in a given calculation. Specifically, systematic Latin-

hypercube sampling was used to simulate n,,~ samples of each required set of k

variates, where k was determined by the equation(s) being evaluated, and a method
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(Irnan and Conover, 1982) was used to obtain rank-correlated sample vectors, each with

a rank-correlation matrix Mi (i = 1,.. .,k) not significantly different (~~~j> 0.05) from a

specified target matrix T, which by default was a k x k identity matrix modified to reflect

correlations specified below. A value of n,,~ = 2000 was used unless otherwise

specified. The k differences between Mi and T were each assessed using an asymptotic

chi-square test (Jennrich, 1970), and the p-value from each test was adj~ted (to ~adj)to

account for k independent tests) using Hommel’s Bonferroni-type procedure (Wright,

1992). Typically, Min(p,~j) > 0.95; occasional sample vectors not satisfying Padj> 0“01

were rejected. Each simulation was repeated n,i~ times, a grand AM and its CV

(denoted CVM, where CVM = CVIn,tiJ45) from the n,ti calf-specific AMs, and the AM

and CVM were calculated for each ith set of U,ti calf-specific order statistics (i.e., cdf-

abscissa values), where i = 1,.. .,n,.~. The calculated CVM values reflect simulation

quality by indicating the relative size of Monte-Carlo sampling error produced for

estimators of interest conditional on the values of n,m and n,ti used.

Target rank-correlation values or matrices were estimated for all sets of correlated

variates noted or implied above, namely, the sets: {V~ti,Valv}, {vfd/vW}/

~(BG~.g)(~Cfi.g)(~Gj.~),(~Cj*),(~G,~.r)(~G,~.r)} {Z,z} and {~t~, &} (see Results,

Sections 3.1 and 3.2). These correlations were used, respectively, to evaluate: D~,fi and

DC,ti in Equations 6 and 15b; DC,Pin Equations 15a-b; (&P) in Equations 16c and 20c;

Bm in Equations 16b and 20b, and FC(DCJ in Equation 18. In calculations to estimate

correlations involving (BMA,P), values of YZ,ti= 500 and n,= = 50 were used.

Correlations involving all the variate sets listed above were used in nested (i.e.,

two-dimensional) Monte-Carlo evaluations of Equation 22 (which, in this case, refers to

Equations 16a and 20a) that were performed to estimate RU,V. For these nested

calculations, values of n,ti = 100 and n,a~ = 999 were used, with n,a~ used to simulate all

uncertain variates, and then used again to simulate all heterogeneous variates

conditional on each of the n,,n simulated sets of uncertain variates. Because

(B~A) = (B~.,,) and B~. = B~.,, for all pathways 1?(see Results, Section 3.1), (AA) and

BMA were used to evaluate Equations 16b and 20d, rather. than (BMA,P) and BMA,P.

However, to evaluate Equations 16a-c, 20a-c, 22, and 25, pathway-specific dose
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correlations noted above were applied (as applicable) to EBW and 13w to regenerate the

pathway-specific variates involved in these equations.

All calculations were performed on a PowerMac G4 computer using the programs

Mathen@ica@4.0 (Wolfram, 1999) and RiskQ 4.0 (Bogen, 2000). Documentation of these

calculations appears in Appendices 3.A through 3.1, in which calculations and related

comments are organized by topic. Appendices 3.A (Concentration), 3.B (Intakes), and

3.C (Fraction of Lifetime at One Local Residence) all document the derivation or re-

derivation of exposure-related input variates explained in Daniels et al. (2000), which

were used to calculate TCE exposures as explained above (Section 3.2). Appendices 3.D

(Effective Genotoxic Dose) and 3.E (Effective Cytotoxic Dose) document the calculation

of corresponding biologically effective (TCE or TCA) doses. Note that calculations

pertaining to the definition or characterization of variates VW,vv~~, v~,ti~, Vfdl ~deq/ Vfy)

and V, all appear in Appendix 3.E. Appendix 3.F (Effective Dose Correlations)

documents calculations made to estimate rank correlations among MA- and pathway-

specific normalized biologically effective doses. Appendix 3.G (Potency) documents all

calculations made pertaining to modeled dose-response under both mechanisms of

carcinogenic action considered (M& and MA-). Appendix 3.H (TCE Risk) documents

all calculations made pertaining to corresponding predicted risk. Note that calculations

pertaining to the definition of variates UtiOn, U~~P,and Vtdp appear in Appendix 3.H.

Finally, Appendix 3.1 (Functions Used) briefly describes all Matl.zenmtica@and RiskQ

functions used to carry out calculations documented in Appendices 3. A-3.H. More

detailed explanation of Maflzemafica@, RiskQ, and JUV analysis is beyond the scope of

this report, and is provided in references cited.

All constants and variates defined in

risk, as described above in Sections 2.1

(Table 2).

this report that were used

-2.6, are summarized in

as input to estimate

the following table
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3. RESULTS

Resulting estirnates of biologically effective dose TCE contamination at Site LF-13

are presented below in Section 3.1, followed (in Section 3.2) by estimated dose-response

relations obtained. Finally, Section 3.3 provides a characterization of corresponding

risks and associated JUV estimated using the systematic probabilistic framework

adopted for this study, as well as a comparison of these estimates with point-estimates

of risk for Site LF-13 obtained using traditional methods.

3.1 Biologically Effective Dose

The cdfs obtained to characterize variability in the limiting fraction Vfm,ti~of low-

level ingested TCE that is metabolized, and in the corresponding limiting fraction Vh,ti

(= v~m,d,,) of low-level respired or dermally absorbed TCE that is metabolized, are

shown in Figure 3. The variates {Vhti,Vdv} were found to have an approximate rank

correlation of-0.75 (CVM = 0.33Yo). Although not used in calculations performed in this

study, the rank correlation between variates {Vhm~,Vfm@} was found to be -0.83

(CVM = 0.3070).

The JUV-expectation of genotoxic effective dose, (~), was found to be

5.93x10-5 mg kg-l d-l (CVM < lYo), with corresponding pathway-specific dose fractions:

~G~~= 0.843, \G,inh= 0.039, and ~.,d,, = 0.118. The JUV-expectation of cytotoxic effective

dose, (~), was found to be 0.0269 mg L-’ (CVM e lYo), with corresponding pathway-

specific dose fractions: ~c;n~= 0.604, ~c,ti = 0.312, and~c,~,, = 0.084.

The cdfs obtained for the three pathway-specific expectations with respect to

uncertainty in normalized effective genotoxic dose ( (B~,P) for 1?={ing, inh, der}, shown

as three bold curves), and for the corresponding three pathway-specific expectations

with respect to variability in normalized effective genotoxic dose ( BG,P, three light

curves), are plotted in Figure 4a. The figure shows that the three pathway-specific

curves that comprise each set of (bold or light) curves are virtually indistinguishable.

The cdfs obtained for the three pathway-specific expectations with respect to

uncertainty in normalized effective cytotoxic dose ( (BC,P), three bold curves), and for

the corresponding three pathway-specific expectations with respect to variability in
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Figure 3. Cumulative distribution functions characterizing interindividual
variability in limiting metabolized fractions Vh,p of low-level TCE absorbed via
different exposure pathways P, where P = {ing, inh, and der} for {ingestion,
ihalation, and dermal} pathways, respectively.

46



1,

0.8

0.6

0.4

0.2

0

dose

(a)

1

0.8

0.6

0.4

0.2

n

o 1 2 3 4 5

\ —,. i

Cytotoxic dose :

(uncertainty) ‘

“o 5

Nor;alize; dose ~unitl&s)

Figure 4. Expectations with respect to uncertainty vs. variability in normalized
effective (a) genotoxic dose (B~,P), and (b) cytotoxic dose (BCY), shown for each
(1?= ingestion, inhalation, and dermal) exposure pathway considered. Each
corresponding cumulative distribution function (calf) shown characterizes
normalized interindividual variability in values of expected risk (bold curves), or
normalized uncertainty in the population-average value of risk (light curves)
predicted for hypothetical residents exposed to TCE from ground water at Site
LF-13. Three bold and three light exposure-pathway-specific curves appear in
each plot, but in each set these curves very nearly coincide (except for slight
divergence among bold curves in plot b). All the cdfs were normalized to have
an arithmetic mean value of one.
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normalized effective cytotoxic dose ( BC,P, three light curves), are plotted in Figure 4b.

The figure shows that the three pathway-specific curves that comprise BC,P (light

curves) are virtually indistinguishable, while those comprising (l?C,P) (bold curves) are

nearly so. Thus (BM,4) = (BMA,P ) ancl ~=~ for all pathways P, which justifies the

exclusive reliance on (B~A) and B~A for calculations described in Methods. The

‘ariates {~=1 were found to have an approximate rank correlation of 0.49

(CVM = 0.67%), and rank-correlation and corresponding CVM matrices obtained for the

six (~*,~ ) variates are listed below in Table 3.

3.2 Dose-Response

The cdfs characterizing estimation error (uncertainty) in cancer potency UPO,

estimated for each of seven animal-bioassav data sets considered are shown in
J

Figure 5a; the corresponding weighted-average cdf based on

Table 1 is shown in Figure 5b.

The fit of the lognormal model specified by Equation 17 to

weights indicated in

mouse TBARS-VS.-AC

data is shown in Figure 6. The model fit the experimental data reasonably well

(~= 13.6, df = 14, p = 0.48). The two corresponding parameter estimates (Al SD)

{~ = 3.05 ~ 0.0920, ~ = 0.732 ~ 0.176} and their estimated correlation coefficient

(r= 0.294) were obtained from this fit. The corresponding risk function FC(DC.)

calculated using Equations 24a-b is shown in Figure 7a. Figure 7b shows the risk

function Fc(Dc~) replotted on a log-log scale, together with an approximating linear-

quadratic equation fit to FC(DC=) as described in Section 2.6: LogIO(risk) = a + bx + CX2,

where x = LogIO(DC,), a = -7.238, b = 2.466x, and c = 0.4699~. The comparison shown in

Figure 7b demonstrates that the linear-quadratic equation provides an excellent

approximation to FC(DCJ over a substantial risk range (-10-10 to -10-2) relevant to the

present analysis. Figure 7b also shows how the slope of the FC(DC,) function plotted on

a log-log scale changes abruptly at a risk level of -10-6, implying that a Monte Carlo

approach would not be practical as an alternative to using Equations 24a-b in order to

evaluate levels of cytotoxic risk FC(DG) <-104, based on Equation 18.
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Table 3. Rank correlations among uncertainty-expectations of normalized biologically
effective doses.”

I I ()BM~,p variate I
(BMA$’)MA p MA 1’ MA p MA p MA p MA p
variate G ing c ing G inh c inh G der c der

MA G
1 0.23 0.88 0 0.89 0

P ing
I

MA c
0.23 11 0 0.42 0 0.51

P ing

MA G
0.88 0 1 0.19 0.92 0.035

P inh

MA c
o 0.42 0.19 1 0.077 0.65

P inh

MA G
0.89 0 0.92 ‘ 0.077 1 0.18

P der

MA c I
o / 0.51 0.035 0.65 0.18 1

P der

“Estimatedvalues of the Spearman rank correlation coefficient (r, shown with two significant digits)
based on Monte-Carloevaluationof the uncertainty-expectationof Equation5Cbased on Equations6 and
15a-b, where n,,~ = 500 and n,ti = 50. For all r-valueslisted, SDM <0.0025 where SDM = (rz,J’/2SD(r)
andSD(r)denotesthe SD of the rz,tiestimatesof r obtained.

3.3 Predicted Risk

The individual risks predicted in this study correspond to the assumption that the

assumed TCE concentration in ground water beneath Site LF-13 (-22 ppb, as of 1997)

remains unchanged (see Daniels et al., 2000). The cdfs obtained that characterize

uncertainty in the predicted population-average value of individual risk, ~, and

interindividual variability in expected values (i.e., “best” estimates) of individual risk,

(R), are shown in Figures 8a and 8b, respectively, plotted together with corresponding

CVM values. In Figures 9a-c, the cdfs ~ and (R) are contrasted over different ranges
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Figure 6. Fit of lognormal model to mous e cytotoxicity data from Larson and
Bull (1992a). Experimental mean (Al SD) data (open points) are shown relating
administered TCA dose (Ac) to a hepatocellular lipoperoxidative index (TBARS)
associated with liver cytotoxicity, from which the mean (YO)of measured control
TBARS levels has been subtracted. The dashed line indicates the 2-tailed 95%
upper confidence limit (UCL, Y,i~)on YO,minus YO. The lognormal model shown
(curve; see Equation 17) was fit to the data.
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Figure 7.(a) Risk of cytotoxic response, FC(Dc$, asa function of acute effective
administered TCA dose D=., estimated from mouse cytotoxicity data of Larson
and Bull (1992a) on TCA-induced TBARS elevation (see Figure 6). (b) The
function FC(DC.) (solid curve) replotted on a log-log scale, together with the
approximating equation, LogIO(risk) = -7.238 + 2.466x + 0.4699# (dashed curve),
where x = LogIO(DC.).
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Figure 8. Uncertainty in (a) population-average risk, ~, and (b) interindividual
variability in expected rfik, (R), p redicted for hypothetical individuals exposed
to TCE in ground water from Site LF-13. In each plot, the Monte-Carlo relative-
sampling error of the x-axis value of each point on the bold cdf curve is indicated
by the corresponding y-axis value (labeled CVM) of the light curve shown. For
example, from plot (a) the 99fi percentile value of ~ is estimated to be -0.49x10-G,
which estimate has a CVM of -0.060, indicating a sampling error of about A6Y0.
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Figure9. Comparison of ~(bold curves) vs. (R) (light curves) over different
ranges of predicted risk (a) R < O.OIXIO-G,(b) R < 0.5x104, and (c) R < 15x10-G.
The relationship is not consistent over these risk ranges, and both cdfs are highly
skewed.
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of risk. Figures 10a-b corn-pare cdfs with respect to variability in JUV estimators Ru,u

conditional on specified confidence bounds (u) on uncertainty, for u = 0.50, 0.95, and

0.99. The nested Monte-Carlo calculations required to estimate these three RU,Ocdfs took

a total of 10.6 h to perform.

Table 4 provides a comparison of an upper variability bound (v = 0.99) on these

cdfs to mean and upper-bound values of ~ and (R), as well as to traditional point-

estimates of risk ( ~RME and ‘I@) ‘aken ‘rem ‘atiels ‘t al” (2000)” cm ‘alues ‘ere all

about 10% or less, except for a CVM value of 23% for the expected value of ~. These

CVM values indicate reliability in the result obtained that the estimated mean and

upper-bound values of ~ and (R) are all <-10-6, and that both JUV estimators are <

5 x 10-5.

Corresponding estimates of population risk (i.e., the uncertain number N of cases of

cancer or TCE-induced toxicity) depend on the assumed size n of the total exposed

population (including all inunigrants to and emigrants from areas hypothetically served

by Site LF-13 water), for an arbitrarily assumed total period equal to one average

lifetime (taken to be 70 y), during which total or partial lifetime exposures would

hypothetically occur (see Daniels et al., 2000). Expected population risk (N) conditional

on various assumptions concerning population size n are listed in Table 5, together with

estirnates of the corresponding likelihood (l–PO) of one or more cases, and the likelihood

(PO)of zero cases, being attributable to TCE in groundwater at Site LF-13 over the 70-y

period of consideration.
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Figure 10. Comparison of estimators, Ru,v,o f joint uncertainty and variability in risk,
over different ranges fo risk, where u and v refer to fractiles with respect to uncertainty
and variability, respectively, and where the up er-bound value v = 0.99 was used. In

1?(a), R.,O.WS 5X10-’, an d in (b) RU,O,WS O.25X1O . CVM cu rves denote corresponding
relative error, as in Figure 8. The CVM that exceeds 0.20 where RU,OW= 0.25x10<
corresponds to value of u = 0.50 (median uncertainty), conditional on w hich, for
example, F&,O,W= 0.017x10-’. The CVM >0.20 therefore pertains to a very unlikely level
of risk.
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Table 4. Summary of estimated risk posed by TCE in ground water at Site LF-13.

Method Value Error
Type of risk estimator Symbol (x 106) (%)*

Traditional

Risk to “reasonably maximum exposed” indiv. RRME 61. NA

Upper “conservative” bound (using 95% UCLS) R= 240. NA

Explicit with respect to:a

U in population-average risk ~ n,fi = 10

Expectation (with respect to U)
()E

0.92 69.

Upper 95% U-bound %.95 0.098 2.5

Upper 99% U-bound %.99 0.49 6.0

V in expected risk (R) n,ti = 10

Population-average (with respect to V) @j 0.23 43.

Upper 95% V-bound WI.,, 0.17 2.8

Upper 99% V-bound (R),.W 1.4 8.1

Joint U and V in risk: R n~ti = 100

Upper (95%-99%) (U,V)-bound &.g5,0.w Z.O 4.z

Upper (99%-99%) (U,V)-bound %99,0.99 37. 5.3

“NA = not applicable, U = uncertainty, V = interindividual variability. Error =
coefficient of relative variation of the mean of n,h U-, V-, or JUV-related estimates, each
based on n,~m= 2000 Monte-Carlo-simulated sets of model-parameter values, except
JUV estimators, which used n,-= 999.
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Table 5. Pomlation risk associated with multi~athwav ex~osures to TCE-contaminated
ground wa;er at Beale Air Force Base in Califoka! ‘ ‘

Total
exposed Exposed Expected value~

population population
Prob(N = O)b l?rob(N 2 O)bover 70 y during 7.6 y

of N

n n... P. 1-P. (N) = n x (F)

100

1,000

2,000

10,000

30,000

100,000

1,000,000

99,796,500

11

109

217

1,086

3,257

10,857

108,571

10,835,049

0.999913

0.999423

0.999166

0.998468

0.997568

0,995219

0.974127

0.500000

0.000089

0.00058

0.00083

0.0015

0.0024

0.0048

0.026

0.50

0.000092

0.00092

0.0018

0.0092

0.027

0.092

0.92

91.

‘N= population risk, i.e., the predicted number of cases (i.e., individuals with) a cancer
or noncancer endpoint due to exposure to TCE from Site LF-13; n = the total number of
individuals assumed to incur the population-average risk ~ within a 70-y period of
consideration; n,= = mean number of exposed people at any given moment assumed to
be served by ground water from Site LF-13, assuming a mean 7.6-y duration of
residence (see Daniels et al., 2000).

bl?robabilities POare shown rounded to 6 decimal places; complimentary probabilities
(l-PO) are shown rounded to 2 decimal places; and exposed population n,= is shown
rounded to the nearest integer; no more than 2 significant digits are implied in estimates
listed in columns 2 through 5.
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4. DISCUSSION

A systematic probabilistic framework was used to estimate the aggregate risk of

cancer and noncancer endpoints for hypothetical future residents exposed to TCE from

ground water at an inactive landfill site at Beale U.S. Air Force Base. The framework

used here differs from previous approaches (Baird et al., 1996; Butterworth and

Bogdanffy, 1999; Carlson-Lynch et al., 1999; Gaylor et al., 1999; Lewis, 1993; Slob and

l?ieters, 1998) in that it is the first to provide an integrated, consistent treatment of

(i) cancer as well as noncancer endpoints, (ii) two disparate yet plausible mechanisms of

carcinogenic action in the case TCE (genotoxic vs. cytotoxic), (iii) pharmacokinetic

considerations, and (iv) quantitative analysis of JUV in model inputs and corresponding

characterized risk. The framework incorporates some of the probabilistic methods

suggested previously, but modifies others in important and/or fundamental ways. In

particular, the human-variability factor Vidp (that has an AM of 1) and the acute-to-

chronic uncertainty factor (l+ UtiOJ (that by definition is >1) used here differs

fundamentally from analogous factors recommended by Slob and I?ieters (1998), in

order for these factors to fit logically within a systematic probabilistic framework that

addresses points (i)-(iv) above. The proposed framework is also the first ever to address

both issues (i) and (ii) for the purpose of quantitative risk assessment, independent of

issues (iii) and (iv). Specifically, the systematic probabilistic framework used in this

case study enabled the application of Equation 22, which in turn represents a

fundamentally novel way of addressing multiple toxic endpoints and/or alternative

modeling assumptions in quantitative risk assessment.

The application of the proposed systematic probabilistic framework to a case

involving TCE also illustrates several methods useful for addressing a number of

technical issues necessary to consider in order to perform quantitative risk assessment

for combined cancer and noncancer endpoints within a systematic probabilistic

framework. For example, the quantitative analysis of interindividual variability in

pharmacokinetic relations for TCE done in this case study involved a variety of

methods that might also be useful in similar analyses for other compounds exhibiting

saturable metabolism. Another example is the application of Equations 24a-b to

calculate a dose-vs.-risk-of-adverse-response cdf that reflects uncertainty in the

estimated parameters of an assumed dose-response function fit to available data. These
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equations allow an analytic approach to this problem in the case of approximately

normally distributed data, in contrast to Monte Carlo methods (e.g., as proposed by

Slob and I?ieters, 1998) that may not be practical to implement reliably, as shown in this

case study (see Section 3.2).

All estimates of individual risk obtained in this study (Table 4) are far less than

corresponding upper-bound point estimates of individual risk, l?w~ and fire@, that

were obtained for comparison by Daniels et al. (2000) using standard, traditional

deterministic methods (namely, algebraic substitution of upper-bound and/or default

parameter values into equations used to estimate risk). Daniels et al. (2000), who did

not consider JUV in pharmacokinetic and dose-response relations pertaining to TCE

risk, obtained a similar result. In the present study, the systematic probabilistic

framework used to consider JUV in pharmacokinetic and dose-response relations

pertaining to TCE had a substantial impact on predicted risk for Site LF-13. This impact

can be assessed by comparing the risk summary in Table 4 of the present study with

that in Table 3 of Daniels et al. (2000). The upper-bound risk estimators ~9, and (R)0,9,

obtained in the present study are about 60- and 80-fold less, respectively, than the value

of these estimators obtained by Daniels et al. (2000).

Even the JUV-estimator ROg~,0,9,approximated in Daniels et al. (2000) is (Slightly)

greater than the value (of -2 x 10-6) obtained here using a nested Monte-Carlo

procedure for the more conservative JUV-estimator RO,g~,O,gg.Only the even more

conservative JUV-estimator, RO.W,Ogg,obtained (37x 10-6) was substantially greater than

10-6. While the latter value is less than the deterministically (hence, relatively easily)

calculated fim~ value of (-60 x 10-6), the two values are fairly close, indicating that ~m~

in this case provides a credible estimate of the more precisely defined estimator RO,gg,O,gg

(namely, the 99th percentile on uncertainty in risk to the person who is at the 99’h

percentile of risk relative to others at risk). Furthermore, ~M~ is relatively easily

calculated, whereas RO,gg,O,ggrequired about 10 h of computation in the present study. It

might therefore be preferable to use ~m~ to optimize risk reduction relative to an

upper-bound JUV estimator (such as RO.99,0.99).
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Upper-bound JUV estimators allow explicit consideration of equity in the

distribution of interindividual variability in imposed risk. Point estimates such as ~w

cannot do this explicitly, because they cannot generally be interpreted in any precise

manner with respect to variability per se or to uncertainty per se. In the present case

study, both ~w~ and RO.gg,o.ggare < 5xl@/ which indicates (vaWely via &’fE/ explicitly

by ~~.~~,~.w)the de minimk nature of predicted upper-bound risks plausibly due to TCE at

Site LF-13 hypothetically faced by those who would be among most at risk relative to

others exposed to ground water from that site. However, such risk estimates do not

necessarily correspond to the magnitude of health consequences predicted to be

associated with such exposure. Such effects can only be addressed by quantitatively

considering uncertainty in population risk, which in turn can only be accomplished by

quantitative JUV analysis that characterizes uncertainty in population-average risk ~

conditional on population size n (e.g., via Equation 22) (Bogen, 1986,1990b; Bogen and

Spear, 1987).

Interesting results concerning population risk were obtained in this study via

quantitative JUV analysis addressing multiple health endpoints and mtiltiple

mechanisms concerning TCE-induced health risk. Earlier results by Daniels et al. (2000)

indicated that exposure to TCE from ground water at Site LF-13 would be mzlikely to

cause a single occurrence of a TCE-related health impact provided that n <-30,000.

Results from the present, more comprehensive analysis (Table 5) indicate that a single

case most likely would not occur even if the number of people served by ground water

from Site LF-13 were ten million. That is, the new results indicate that a single case is

unlikely to occur under any realistic assumption concerning population size. Moreover,

results obtained in the present study indicate .that, under the assumptions used, there is

a >99.5Y0 chance that TCE-related mitigation of Site LF-13 would confer no (i.e., zero)

public-health benefit if as many as 10,000 or fewer people were residentially served by

the site’s TCE-contaminated water (assuming the concentration of TCE never were to

increase above levels measured in 1997). Therefore, under this population scenario, any

resources directed at mitigating the site are virtually certain to be wasted from a public-

health perspective. Even this hypothetical scenario is conservative, because it is likely

that current TCE contamination in ground water at Site LF-13 (due to

TCE contamination) could not persist for 70 y if that water were

a finite mass of

to serve 10,000
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hypothetical residents throughout this period. Dilution of the source mass is expected,

and the magnitude of this dilution is expected to be proportional to the water flow rate

into and away from the source; indeed, this is the basis for pump-and-treat site-

mitigation strategies. Water service to that many people from this single goundwater

source-if even possible-would also induce some (perhaps substantial) infiltration of

non-contaminated water, again causing dilution of residentially delivered TCE

concentrations.
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Appendix 1

Method of Moments for Lognormal Variates

Given a normally distributed variate Y with arithmetic mean (AM) pY, standard

deviation (SD) o,, and corresponding coefficient of variation (CV = SD/AM)

I’Y = ( ~Y1 PY)/the variate x = ey has a lowormal (LN) distribution with geometric ‘em

(GM) evy and geometric standard deviation (GSD) ecy, where e = in-’(l) and in denotes

natural logarithm. These assumptions are efficiently denoted Y - N( pY, OY) and

X - LN( py, cry). The method of moments maybe used to relate given AM, SD, and CV

values of X (pX, crx, and Tx, respectively) to those of Y; in particular, the AM/GM ratio

for X, p = (Ax/ eP’ ), is equal to e“;’2 where o; = in p2 = ln(l + y;) (Aitchison and

Brown, 1957).

LN moment relations conveniently imply that the ratio of any given percentile of X

relative to its GM or AM corresponds to a unique set of LN parameters. Let

XP = eP’+O’zpdenote the 100pth percentile of X, where 0< p <1, ZP= O-l(p), and@ is the

cumulative normal probability distribution function. Now let qP= XP/e~y and

r,= ~/#x denote the ratios of X, to the GM and AM of X, respectively. Conditional on

ePYand the ratio qP, it follows immediately (by solving for py and ay) that

X- LN(pY, in q:”). Conditional on px and the ratio rP, it follows that

X - LN[ln(pX) – (@/2), oyl, where OY is the positive OY-root of

r /o; – 2zPoy + 2 in rP= O; i.e., Or = 2P+ 2P– in rP for all rP < e’; 2 (larger values of rPare

not possible conditional on ZP).

LN moment relations also imply that for any independent LN variates Xi = ey’,

i=l ,.. .,n, with corresponding CVS y~, the CV yz of the product Z = fiXi is
i=1

conveniently ralated as follows to the CVS yi of Xi:
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= p+ly+y:)-
Conditional on known yz and yi for i #j and 1 <j< n, inverting the latter equation

readily yields the unknown CV of Xj as

i

l+Y; _~yj =

fi(l+ y:) “
i#j

If yj is obtained in this way and a single additional Xfparameter among the set {AM,

SD, GM, GSD} is known, all three remaining X~-parameters are easily obtained via the

moment relations described above. For example, if the AM of Xj equals 1, it follows that

Xj - LN(-d/2, @ where C?= ln(l+ y;).
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Appendix 2

The Exact Distribution of a
Linear Function of Correlated ~-Distributed Variates

Exact and corresponding approximate expressions are available for the distribution

of linear functions of independent t-distributed variates (Ruben, 1960; Patil, 1965;

Ghosh, 1975; Walker and Saw, 1978; Chaubey and Mudholkar, 1982; Ojo, 1988; Singh,

1990), but not for correlated f-distributed variates. The exact distribution of a particular

weighted difference (or sum) of two independent (uncorrelated) f-distributed variates,

known as the Behrens-Fisher distribution, was derived by Ruben (1960) in integral

form. A linear combination of f-distributed variates is referred to as a generalized

Behrens-Fisher distribution (Patil, 1965). The result obtained by Ruben (1960) is thus

one type of generalized Behrens-Fisher distribution. However, his approach can be

generalized as follows to obtain the exact distribution of any linear combination of

t-variates with specified correlations.

Let S = ~Wi Tfi be a general linear function consisting of a weighted sum of
icl

correlated, t-distributed variates Tj,, each with corresponding weights ZUiand degrees of

freedomj for i = 1,..., n. Now introduce two corresponding sets of auxiliary variates Zi

and Ui(i=l ,... ,n), where Zi are correlated N(O,l) (standard normal) variates all with

zero mean, unit variance, and an (TZXIZsymmetric) correlation matrix R = @i,j) ({i,~} =

1,.. .,n), and where Ui have independent chi-square distributions withj corresponding

degrees of freedom. Below, gx(x) and Gx(x) denote the density function and cumulative

distribution function (calf), respectively, of the specified variate (X). It follows that

(2.1)

so that, conditional on variates U = (Ul, . . .. U.), S is distributed as N(O,o:), with zero

mean, with variance

n W;jz i-
LijD: = ‘+z~pi,jwiwj ~ u, ‘

i=* Ui i<j i]

(2.2)
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and with the corresponding density function,

[)
2

g,(sI u) = 1
Go, “p i% “

The unconditional density function of S is then given by

gs(s) = J...Jgs(slu)lyJ$) ci.i ~
00 2i

(2.3)

(2.4)

Now transform ~i in terms of new variates y = ~ui and xi = ~i/y for i = 1,...,n–1, and
iel

n–1
also define x. = 1– xxi and @z(x)= ~/(Y@ ), where x =(X1, . . .. X._l) and ~= ~~. ~s

icl izl

transformation implies that

(y(x) = ( r)-ff “
f = $&L+2~pijwiwj ~ ,

y 0; ~n* ‘i ‘i<j i]

(2.5)

and it has the Jacobian matrix: J = (yIfl + M), where 1. is an nxn identity matrix and the

elements ~i,j of the nxn matrix M are all zero, except ~i,~ = -y for i = 1,.. .,n–l and

VZ~,j= Xj for j = 1,.. .,n. The corresponding Jacobian, IJ I = Det(J) = yn-l, and Equation 2.5,

reduce Equation 2.4 to

Lps(w Y“-’e ]

#l)
(~)y(;-n)dyZ(;)fi @ dxl...ckl-l ,

$?s(s) =
o 00 i=l

(2.6a)

(2.6b)

in which @(x) denotes the positive square root of ~(x) defined by Equation 2.5. A new

transformation, t’ =s @(x) with Jacobian J = 1/$(x), shows the braced expression in
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Equation 2.6c to be J times the density g~f(t’) of a t-variate with ~ degrees of freedom

(i.e., Tj) conditional on x. Integrating Equation 2.6c with respect to f’ over the range

[-~,f] shows the cdf of S to involve a multiple integral with respect to x over the cdf for

Tj evaluated at x-dependent arguments defined using Equation 2.5:

n X@-’)
G,(t) = ~.../G,, (t @(x) Ix) r($)~ ~ dxl...dx~_l . (2.7)

00 izl

In the case that n = 2, using x to denote xl, Equation 2.7 reduces to

G(t) = ]G,f(f!(x)
o

= ]G,,(f4$(X)
o

+_l
(1- x)+’ dx

x) x
B($,~)

X) (dB(~,~,x)/ dx) dx ,

(2.8a)

(2.8b)

where B(a,b) and B(a,b,x) denote the beta function, and the corresponding incomplete

beta-function ratio with respect to x, respectively, of the specified arguments (see

Abbreviations and Notation). Thus, in this case, G~(t) is for given t the mean value of

the conditional Student-f calf, G~j(iq(x) Ix), where x is Beta-distributed with parameters

fl/2 andfi/2. The latter fact was noted by Ruben (1960), who obtained G,(f) specifically

for the case in which n = 2, ZUl= sin 0, ZOz= cos 0, and p1,2= O.
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Appendix 3

Documentation of Mathematical 4.0@and RiskQ Calculations
All calculations were performed on a 400-MHz PowerMac G4 using the programs

Mathenzafica@ 4.0 (Wolfram, 1999) and RiskQ 4.0 (Bogen, 2000). Documentation of these

calculations appears in Appendices 3.A through 3.1 which follow, in which calculations

and related comments are organized by topic. Appendices 3.A (Concentration),

3.B (Intakes), and 3.C (Fraction of Lifetime at One Local Residence) all document the

derivation or re-derivation of exposure-related input variates explained in Daniels et al.

(2000), which were used to calculate TCE exposures as explained above (Section 2.2).

Appendices 3.D (Effective Genotoxic Dose) and 3.E (Effective Cytotoxic Dose)

document the calculation of corresponding biologically effective (TCE or TCA) doses.

Note that calculations pertaining to the definition or characterization of variates VW,

vm~/ Vti,tigl‘fallvdeq/vf,P) and V, all appear in Appendix 3.E. Appendix 3.F (Effectivev

Dose Correlations) documents calculations made to estimate rank correlations among

MA- and pathway-specific normalized biologically effective doses. Appendix 3.G

(Potency) documents all calculations made pertaining to modeled dose-response under

both mechanisms of carcinogenic action considered (M& and MA-). Appendix 3.H

(TCE Risk) documents all calculations made pertaining to corresponding predicted risk.

Note that calculations pertaining to the definition of variates UtiO., L.I~~P,and Vt~w

appear in Appendix 3.H. Finally, Appendix 3.1 (Functions Used) briefly describes all

Mathenmtica@ and RiskQ 4.0 functions used for calculations documented in Appendices

3.A-2.H.

Please note that more detailed explanation of Matkenzatica@, RiskQ, and JUV analysis

is beyond the scope of this report, and is provided in references cited.
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A. Concentration Al

Appendix 3.A

Concentration
of TCE @ BAFB (mg/L)

Y = Log[X]

COIl= {.018, .021, .028}; (*mg/L*)

{{my, sdmy} = {m[LOg[cOnl], SD[Lo9[con] ] / Sqrt[3] },
{me, sdmx} = {~V[con], SDICO=]/Smt[3] ] }

{{-3.81872, 0,129473)

{CV= sdmc/mx, E’sdmx}

{0.13266, 1.00297}

, {0.0223333, 0.00296273]}

tO = tt /. Solve[mx+tt*sdx.. O, tt] [[1]]

-4.35212

RQ[C, T, 2, tO]

0.0244757

tsb= ShnzlateCd~ {T, 2}, 2000];

Sort[tsim] [[{1, 2, 3, 1998, 1990, 1999, 2000}] ]

{-31.607, -22.3327, -18.2209, 18.2209, 9.45819, 22.3327, 31.607}

C=EA (O+sdmy*tsim);

{{mc=EV[C] , SD[C] }, {EVILog[c]] , SDILOg[c] ]}, Idf[cdf[cl r {.5, .95}1}

{{1.08122, 1.43409}, {1.10724 x10-’7, 0.32201}, {0.999908, 1.45641}}

simulatedconc.values

scon= (mx/mc) c;

{{mcon. EV[scon], SD[scon]}, {EVILog[scon] ], SDILog[scon] ]}, Idf[cdf. Cdf[scon], {.5, .95]]]

{{0.0223333, 0.0296222}, {-3.87976, 0.32201}, {0.0206538, 0.0300832}}

Take[Sort[scon], -10]

{0.074688, 0.0801479, 0.0871134, 0.0963267,

0.109112, 0.128074, 0.159096, 0.218571, 0.372219, 1.23676}
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A. Concentration A2

PlotCdf[cdf, Xmin ->-.001, Xmax-> .05];

1

0.8

0.6

0.4

0.2

0 0.01 0.02 0.03 0.04 0.05

scdf . StandardizeCdf [calf,404];

WriteMatrix[”BogenHD:Desktop Folder:concentrakion.txt”, N[scdf]];

a LOg-TranSfOrrnutili@Functions (whereX=LogY)

MSDx[GMx_, GSDx_] := Module[{mu%, si.gy},

s&y.Log[GSDx] ;

mux=GMxEA((sigyA2) /2);

mux{l, Sqrt[EA (sigyA2) -1]}]

GMGSDx[Mx_, SDx_] :. Module[{muy, sigy},

sigy. Sqrt[Log[l+ (SDx/Mx)A2]];

muy=Log[Mx] -(sigy’2) /2;

EA{muy, sigy]]

end

A2



B. Intakes B1

Appendix 3.B

Intakes

2-17-99 (updated4-26-99)

<< Ri skQ’;

■ Log-Transform Utility

GMGSDX: :usage =

“GMGSDX[MX,SDX] returns the geometric mean and geometric sdandard deviation of

a lognormal variate X that also has the specified arithmetic mean Mx and

arithmetic sdandard deviation SDX, based on the method of moments.”;

MSDx::usage .

“MSDX[GMX,GSDX] returns the arithmetic mean and arithmetic sdandard deviation

of a lognormal variate X that also has the specified geometric mean GMx and

geometric sdandard deviation GSDX, based on the method of moments.”;

GMGSDxl::usage =

“GMGSDxl[cvWant,cv2] returns the GM and GSD of a lognormal variate Xl, such that

the product X1*X2 has the desired coefficient of variation (CV) = cvWant,

conditional on the lognormal variate X2 having an arithmetic mean and

CV equal to 1 and CV2, respectively, based on the method of moments.”;

MSDac[GMcd GSDx_J :.Module[{muw sigy},

sigy=Log[GSDx] ;

mux=GMxEA((si@’2) /2);

mux{lr Sqrt[EA(sigyA2) -l]}]

GMGSDI@X_, SDXd :.Module[{muy, sigy},

sigy=Sqrt[Log[l+ (SDx/Mx) ‘2]];

muy.Log[Fk] - (sigyA2) /2;

EA{muy, sigy}]

GMGSDx~cvWent~ CV2J :.Modul~{myl],

muyl.Lo!3[sqrt[
.:::::,11’

E’{muyl, Sqrt[-2muyl]}

] /; Cvwant>= CV2
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B. Intakes B2

■ Data on 1998 U.S. Population

dat ❑

Partition [{5, 18983, 10, 19928, 15, 19268, 20, 19535, 25, 17768, 30, 18545, 35, 20014,

40, 22602, 45, 21962, 50, 18978, 55, 15907, 60, 12587, 65, 10332, 70, 9530, 75, 8782,

80, 7227, 85, 4739, 90, 2554, 95, 1105, 100, 322, 105, 64}, 2];

TBL [data .Data[dat, {Age, temp}, Append-> {Pop, 1000*temp},

Drop ->temp, Append-> {{FPoP, 1. PoP/ (Plus@@PoP), 1},

{Cl%op, SUMIFPOPI, 1)}11

Age
5
10
15
20
25
30
35
40
45
50
55
60

;:
75

Pop
18983000
19928000
19268000
19535000
17768000
18545000
20014000
22602000
21962000
18978000
15907000
12587000
10332000
9530000
8782000

FpoP
0.0701173
0.0736078
0.07117
0.0721562
0.0656295
0.0684995
0.0739255
0.0834848
0.0811208
0.0700988
0.0587555
0.0464925
0.0381632
0.0352009
0.032438

CFPop
0.0701173
o.i43725
0.214895
0.287051
0.352681
0.42118
0.495106
0.578591
0.659711
0.72981
0.788566
0,835058
0.873221
0.908422
0.94086
0.967555
0.985059
0.994493
0.998574
0.999764

80 7227000 0.0266943
85 4739000 0.0175044

2554000 0.00943368
R 1105000 0.00408153
100 322000 0.00118937
105 64000 0.000236396 1.

tpop=Plus@@Data[data, Pop]

270732000

12yearsandove~ 200899000

{plo, phi} =Data[data, CPPOP] [[{2, 3]]];

pwant=plo+ (phi-plo) 2/5;

{plo, pwant, phi}

{0.143725, 0.172193, 0.214895}

{f12. pwant, f12p.1-f12, f12+f12p}

{0.172193, 0.827807, 1.}

18 yearsand over: 200899000

f2.2Data[data, CPPOP] [[l]] /5;

f18p. 200899000. /tpop;

f18 = l- f2-f18p;

{wl, w2, w3, ww}s{f2, f18, f18p, f2+f18+f18p]

{0.0280469, 0.229895, 0.742059, 1.}
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B. Intakes B3

■ Ingestion (L/kg-d) Ershow and Cantor, 1989, Table 36 p. 76

age= {1, 10, 20, 65, 65 Pius};

W= {87.7, 1127.2, 1197.8, 3960.7, 697.0] /7070.4;

ingest= {53.2, 38.7, 18.4, 21.4, 23.1} /1000;

sd= {50.9, 23.8, 10.7, 12.2, 9.7}/1000;

gmgsd=MapThread[GMGSDx[#l, #2]&, {ingest, sol}]

{{0.0384398, 2.23934}, {0.032965, 1.76188}, {0.0159061, 1.71553}, {0.0185911, 1.69976},

{0.0212984, 1.49628}}

Plus@@w

1.

cdfs=LogNomalCdf[# [[1]], #[[2]], 1000]&/@Log[gmgsd];

adf =AverageCdf[cdfs, Weights -> w];

Dimensions[adf ]

{5001, 2}

sim=SimulateCdf[cdfs, 5000, Report -> False];

cdfTWA= Cdf[Plus@@ (w*sirn)] ;

cdfTWAcorrected =Cdf[Plus@@ ({1, 10, 9, 45, 5]*sim/70)];

{SW g-} =GMGSDx[24.2/1000, 17/1000];

{{s% w=}, Lw[{m, swd}], 17/24.2}

{{0.0198023, 1.88387}, {-3.92196, 0.63333}, 0.702479}

cdfErCan =LogNonnalCdf [-3.92195619921997042’ , 0.633330172027946325’ , 200];

PlotCdf[{cdfTWA, adf, cdfErCan], Xnin+ -.0001, Xmax+ .06];
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B. Intakes B4

PlotCdf[{cdfTWA, cd fTWAcorrected}, Xmin +-.0001, Xmax+ .06];

1

0.8

0.6

0.4

0.2

0 0.01 0.02 0.03 0.04 0.05 0.06

{Ev[#], sD[#], Idf[#, {.5, .95}l}&/@{cdfTWA, cdf-corrected~ adf, cdfErC=}

{{0.0241953, 0.00802976, {0.0227623, 0.0390576}}, {0-0240441, 0.00862608,

{0.0223285, 0.0398658}}, {0.024215, 0.0170167, {0.0200231, 0.054078}},

{0.0242229, 0.0170924, {0.0198023, 0.0561224}}}

end

■ SABWRatio calculations

■ Distribution ofBody Surface AreatoBodyWeight(cmZ/kg) Ratio (Phillips etal.,1993)

PP= {O, 5, 10, 25, 50, 75, 90, 95, 100] I1OO.;
ratio z {

{421, 470, 507, 563, 617, 719, 784, 846, 1142],
{268, 291, 328, 376,422, 454, 501, 594, 670],
{200, 238, 244, 270, 286, 302, 316, 329, 351]} *1.;

cdfs . Transpose[{#, PP]]til@ratiOi
motcdf[cdfs] ;
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B. Intakes B5

■ sabwALL

aaf . AverageCdf[cdfS, Weights -> {w1, wZ,w3}];
PlotCdf[adf, Xmin->-. Ol, xmax-> 800];

o 200 400 600 800

TBL[adf]

200. 0
238. 0.0371029
244. 0.0742059
268. 0.176952
270. 0.186514
286. 0.380025
291. 0.440497
302. 0.571456
316. 0.687114
328. 0.725091
329. 0.728664
351. 0.781572
376. 0.799532
421. 0.855756
422. 0.857034
454. 0.915424
470. 0.927621
501. 0.951541
507. 0.95251
563. 0.963639
594. 0.971495
617. 0.97796
670. 0.98962
719. 0.992988
784. 0.997195
846. 0.998598
1142. 1.

{EV[adf], Idf[adf, .95]}

{325.881, 499.003]

WriteMatrix[”BogenHD:Desktop Folder:sabwratioALL.txt”, adf];

{x, Y} =Transpose [Rest[Drop[adf, -l]]]

{{238., 244., 268., 270., 286., 291., 302., 316-, 328., 329., 351-, 376.,

421., 422., 454., 470., 501., 507., 563., 594., 617-/ 6713.,719.1 784./ 846-}I

{0.0371029, 0.0742059, 0.176952, 0.186514, 0.380025, 0.440497, 0.571456, 0.687114,

0.725091, 0.728664, 0.781572, 0.799532, 0.855756, 0.857034, 0.915424, 0.927621,

0.951541, 0.95251, 0.963639, 0.971495, 0.97796, 0.98962, 0.992988, 0.997195, 0.998598]}

B5
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~. Trmspose[{NomlCdf [Y, Invl, x}]

{{-1.78534,238.}, {-1.44516,244.], {-0.927042,268.},

{-0.890815, 270.}, {-0.305415, 286.}, {-0.149709, 291.}J {0.1800831 302.}’

[0.487687, 316.}, {0.598033, 328.], {0.608776, 329.}, {0.777512, 351.},

~0.839952, 376.j, {1.06145, 421.}, {1.06709, 422.}, {1.37493, 454.},

{1.4583, 470.}, {1.65998, 501.}, {1.66969, 507.}, {1.79457, 563.}, {1.90324, 594.},

{2.01334, 617.}, {2.31232, 670.}, {2.45666 719.}, {2.76978, 784.}, {2.98837, 846.})

PlotData[xy] ;

800

700

600

500

400
0°

300
00

0 00 0
0

-2° -1 0 1 2 3

0

0

0
0

0
0°

o

end

E sabwTWA

{nsam, nsixn}= {2000, 10];
Clear[fxn];

fxn[al_, a2_, a3–1 :. Plus@@ ({al, a2, a3} {

2, 16, 52}/70)

Timing[{jen, calf,cvm] =QUAnalyze[cdfs, f-, nss% nsim];]

{233 .983 Second, Null}

TBL/@jen

Fractile Value CVM(%)
0.01 259.77 0.362611
0.05 279.448 0.0700455
0.5 :~~.7f6 0.0251131
0.95 0.0744586 }
0.99 393:457 0.15432
Mean 325.884 0. + 4.93556x10-71
variance 777.661 0.230742
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PlotCdf[{cvm, calf},Ymin+-. Ol, Xmin +225,

1-

0.8

0.6

0.4

0.2 ~

250 300 350 400

Xmax +430];

Sqrt [777.660703210145509]

27.8865685090537002

{EV[cdf, Empirical -> True], SD[cdf, Empirical -> True], Idf[cdf, {.5, .95}])

{325.884, 27.8746, {326.046, 373.11}}

sdf = StandardizeCdf[cdf, 404];

{EV[sdf, Empirical-> True], Idf[sdf, {.5, .95}]}

{325.875, {326.046, 373.235}}

WriteMatrix[”Bogen’s:Desktop Folder:sabwratioTWA.txt”, sdf];

{x, y} =Trenspose [Rest[Drop[cdf, -l]]];

~. Transpose [{NormalCdf [y, Inv], x}];

fit. FIT[~, {1, X}, X, Report +True];

Coef LS Est, SD 95%LCL 95%UCL
q[o] 325.884 0.0240524 325.837 325.931
q[l] 27.9467 0.0241325 27.8994 27.994

R2= 0.998512

F(1,1998)= 1.34108x106 2-tail p= 3.7487211392x10-2827

PlotData[xy, FitTo+ {fit. {1, X], X]];

400

350

300

250

-3 -2-1 0 1 2 3
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end

end

■ Inhalation (L/kg-d) OH EA. 1996. Stochastic Analysis, p. 3-31 -3-32.

Option 1

pval = .01 {1, 5, 10, 25, 50, 75, 90, 95, 99, 100 (1-1579-1)};

zval = NormalCdf [pval, Inverse] ;
yAdult={l12.8, 171.4, 179.7, 185.2, 206, 245.6, 295.1, 366.6, 494, 638.8};

yChild= {342.5. 364.5, 375, 401.5, 441, 489.5, 540.5, 580.5, 663.3, 747.5};

{zYA, Z~} .Transpose[{zval, Log[#]}]&/@{yAdult, Whild};

(Not Used): Calculate lognorrnal parameters from OHEA data

Clear[x];

{my, sy} =FITIzYA, {1, X}, x];

{m, g-}= EA{MY, SY};

{{=/ 9Sa}zMSm[9mrwdll

{{231.574, 1.32974}, {241.172, 70.1495}}

PlotData[zyA, FitTo-> {IUY+SY*x, x?];

6.5 , 0

6.25 } o

6 :
5.75 ‘

5.5 ;
5.25 i O.

5 ‘

-2 –1 o 1 2 3

{my, sy} .FITIzYC, {1, X}, x];

{m, gsd}= EA{MY, sY};

{{cmb wd}. M=w[gMJ mall

{{456.675, 1.15697], {461.555, 67.6548}]

B8
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PlotData[zyC, FitTo-> {my+ sy*x, x}];

6.6

6.4

6.2

6

-2 -1 0 1 2 3

Option2 (Used): Use lognormal parameters derived from reported OHEA mean and SD values for Adult and Child

distributions

{mA, sdA, mc, sdC} = {225.2, 64.634, 452, 67.73};

{{~, gsdA} = GMGSDX[225.2, 64.634] ,

{gmc, gsdc } =GMGSDX[452, 67.73],

{CVA, CVC} = {SdA/*, sdc/mC} ]

{{216.461, 1.32491}, {447.009, 1.16069}, {0.287007, 0.149845]]

{imhA, in.hC}= SimulateCdf [{{LN, Log[{gmA, gsdA}] }, {LN, Log[{gmC, gsdC}] }}, 5000] ;

cdfs = Cdf /@ {inhA, inhC};

PlotCdf [Reverse [cdfs] ];

Output-Sample Rank-Correlation Matrix:

1. 0.000314
0.000314 1.

Jennrich’s Asymptotic Chi-Square Test

Between Input & Target Correlation

For 5000 2-Variate Normal Samples:

of Homogeneity

Matrices

Chi2(l)= 0.000492816 l-tail p= 0.982289 (NS)

1

0.8

0.6

0.4

0.2

100200300400500600700

FromFinleyetal. 1994 (CalEPA 1996, p. 10-7), theBWdistribution foradultmales &females is-LN and CV[BW]=

-0.22:
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{ev, sol}= {71., 15.9};

{cv. sd/ev, {BWgm, BWgsd} =GMGSDx[ev, sol],Log[{BWgm, BWgsd}]]

{0.223944, {69.2839, 1.24759], {4.23821, 0.22121}}

From Ca~PNOHEA (1996,StochasticAnalysis,p.3-31- 3-32;cit.above),cvA=CV[24*Q~W]= CVIQtotiBW]= -

0.3,where Qdenotes totalventilationrateinL/h. From Allenand Fisher(1993),~veol~ventilationrateinLhismodeled

asQ-12.9 *BW’Yl.7, and Qtot-kQ forsomeconstantlc.Nowlet VQbe LN-distributedwithanarithmeticmeanofl,

where VQrepresents vtiationinQnotattibutabletotiatinBW. Thus, Q-12.9 *VQa*BWA.7, whence Q/BW -

12.9*VQ*BWA-0.3. Itfollowsfrom themethod of moments that CV[BWA-.3] = CV[BWA.3] = 0.06644, whence CV[VQ] =

0.2919, GM[VQ] = 0.9599, GSD[VQ] = 1.331, Log[{GM[VQ], GSD[VQ] }] = {-0.0408868, 0.285961 }.

{{01, 02} = MSDx[a BWgm A-.3, BWgsd A-.3], CVBW3 . 02/01]

{{0.281039a, 0.0186711a}, 0.066436}

{o . GMGSDX1[O.3, CVBW3] , {muyX, sdyX} . Log[o] ]

{{0.959938, 1.33104}, {-0.0408868, 0.285961}]

{ {mx,

{{1.,

(, By

Scuq ❑ MSDx@@o, CVX= Sdx/mx]

0.291908], 0.291908]

definition, the CV of (BWA.3 * X) = *)

{Sqrt[E” (sdyXA2+Log[BWgsd A .3] ‘2) -l],

((1+cvBW3A2) (1+cvxA2) -1) ’.5}

{0.3, 0.3}

■ InhaleALL

{f12, f12p}

{0.172193, 0.827807}

adf .AverageCdf[cdfs, Weights -> {f12p, f12}];

sadf =N[StandardizeCdf [adf, 404]];

PlotCdf[sadf, Xmin +-.001, Ymin +-.001];

1

0.8

0.6

0.4

0.2

0
0 100200300400500600700

B1O
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{Ev[#]J SD[#], Idf[#, {.5, .95}] }&/@{adf, sadf}

{{264.165, 107.491, {233.106, 487.138}}, {264.165, 108.051, {233.106, 487.146}}}

N[{{PA, PC} = Edf[#, 487.138]&/@cdfs, wp= {f12p*pA, f12*pC}, Plus@@wp}, 10]

{{0.9982290631, 0.7181436766}, {0.8263408411, 0.1236594327}, 0.9500002739}

(
Log[x/gmA]

f12pNormalCdf [
Log[gsdA]

] + f12 NOYZIIS~cdf[‘“91X i =C] ])/. x+Range[487.3, 487.4, .01]
Log[gsdC]

{0.949947, 0.949956, 0.949964, 0.949972, 0.949981, 0.949989, 0.949997, 0.950006,

0.950014, 0.950023}

Log [x/ gmA]
N[FindRoot[f12pCDF[NormalDistribution[0, 1],

Log[gsdA] 1+

Log[x/gmc]
f12CDF[NormalDistribution[0, 1], ] ==95/ 100, {

Log[gsdC]
X, 485, 480, 490}],

16]

{x+487.3630111243049}

WriteMatrix[”BogenHD:Desktop Folder:inhaleALL.txt”, sadf];

■ InhaIeTWA

{{f12P. f12], {f12P, f12}70}

{{0.827807, 0.172193], {57.9465, 12.0535])

{nsam, nsim] . {2000, 10};

Clear[fxn];

fxn[al_, a2_] :. Plus@@ ({al, a2] {

58, 12}/70)

Timing[{jen, calf,cvm} =QUAnalyze[cdfs, fxn, nssm, nsim];]

{143.533 Second, Null]

TBL/@jen

Fractile Value CVM(%)
0.01 166.336 0.275487
0.05 187.965 0.14204
0.5 257.154 0.0674972
0.95 362.928 0.17087 }
0.99 424.294 0.272136
Mean 263.865 7.46556x10-’
Variance 2937.4 0.0463849
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PlotCdf [{CVM, cdf }, Ymin + - .01, tin+ 95, -+430];

1

0.8

0.6

0.4

0.2

0 ~
100 150 200 250 300 350 400

{Ev[cdf, Empirical -> True], SD[cdf, Empirical -> Tr’uel, Idf [calf.{.5, .95]]}

{263.865, 54.1887, {257.154, 362.928}}

sdf. StandardizeCdf [calf,404];

{EV[sdf, Empirical -> True], SD[sdf, Empirical -> True], Idf[sdf, {.5, .95}]}

{263.752, 53.5784, {257.154, 362.847}}

WriteMatrix[”Bogen’ s:Desktop Folder:inhaleTWA.txtm, sdf];



C. Residence c1

Appendix 3.C

Fraction of Lifetime at One Local

Residence

<< RiskQ’;

HardDrive= “Bogen”;

PathNem~ filenameJ hardDrive_StringHardDriv~ := Modul~ {file= filenem~,

If [Head[file] = != string file= ToStrin~file] ];

stringJoi$har~riv~ ‘:Ken:TCE Air Force:Data:”, file]

1 ;

w Israeli, M., and C. Nelson. 1992. Distribution and expected

residence for U.S. housholds. Risk Aria/. 12, 65-72.

St=~-(al*bl(l-z’(-t/bl))+a2t+a3.b3(EA(t/b3)-1))
:

pt=St((al* (EA-(t/bl) ))+a2+(a3* (EA(t/b3))));

Rt =
“pt

;
al+a2+a3

time of

Coefficients a and b all have uni~ of y-l and y, respectively, from Israeli and Nelson Table II (All households, W-Rgn)

m All households

ruleA=Rule@@#&/@Transpos~{ {al, bl, a2, a3, b3}, {.1503, 1.88, .0679, .0015, 13.3}}] :

{St, Rt, RtrA = (Rt /. ruleA) }

( - Fr)_a,b,(_l+E&)_a,t,E~E-=lbl1 E-t
_a,~,(,_E-q-a3b3(-I+E*)-.2.(a2 +a~ ~-+ +& -&)

al+a2+a3

4.55166 E-0.282564 (l_li-
0.531915 t ).o .01995 (_ I+ E0.075188 t )-0.0679 t

(0.0679 +0.1503 E-0”53’”5’+ 0.0015 E0’075’88’)}

({St, pt, Rt} /. AppenWrula& t -> #l ) G/@ {O. 50}

{{1, 0.2197, l.}, {0.0109554, 0.00144923, 0.00659639}}

c1



C. Residence
C2

ploe[kg[lo, ?svaluate[st /. nleAll, {t, or 50}J
~esorigin-> {O, -3.01}, PlotRange-> {{0, 50}, {-3. OIJ o}}, Fr=e->T~el;

o

-0.5‘

-1

-1.5

-2

I
.3 ~

10 20 30 40 50

plot[Log[lO, Evaluate[RtrAll, {t, o, 5olr

=esorigin->{-o.ol, -3.01}, plotR=9e->{{-.olF 5ol~ {-3”01J OII~Fr~e->T~el;

o

-0.5‘

-1

–1.5

–2

-2.5
1

_3 ~
o 10 20 50

■ Western Region

ruleW=Rule@@#&/@TraIMpose [{{al, bl, a2, a3, b3}, {.2029, 1.74, .0832, .0008, 10.3}}]

{al+ O.2029, bl+l.74, a2~ 0.0832, a3 +0.0008, b3 +10.3]

RtrW= (Rt/.ruleW)

~ ~~~~~~(~.~-0.574713‘)-0.00824 (-l+ E0.0970874 ‘)-0.0832t (0 0832 + o .2029 E-0.574713t + O .0008 E “
3.48554E- “

O 0970874 t
)

({st, pt,Rt} /.Append[ruleW, t->#])&/@{O. 50}

{{1, 0.2869, l.}, {0.0038411, 0.00071383, 0.00248808]}



C. Residence C3

Plot [Evaluate [Log [lO, (St /. #)&/@ {ruleA, ruleW}] ], {t,

AxesOrigin-> {O, -3.01}, PlotRange-> {{O, 50}, {-3.01,

o,

o}}

50},

, Frame -> True] ;

.3 ~
10 20 30 40 50

Plot [Evaluate[Log[IO, {RtrA, RtrW}]], {t, O, 50},

AxesOrigin ->{-O.Ol, -3.01}, PlotRange-> {{- .01, 50), {-3.01, O}}, Frame -> True];

o

-0.5

-1

-1.5

–2

-2.5

I

_3 ~
o 10 20 30 40 50

Adaptation of model to account for fraction Fm of moves that are out of a
Western-region water distribution system

{RtrW, (RtrW/. t->#)&/@{O, 50,70}}

{3.48554

~-O.353046(l-=-0.574713 t)_o, oo824 (_ I+ Eo.0970874 ‘)-0.0832 t
(0.0832 + 0.2029 E-0”574713’+ 0.0008 E0”0970874’)t

{l., 0.00248808, 3.67283 XIO-’}}

{0.438743, +}

time . Join[Range[O, 10, .1], Range [n, 50], Range [55, 70, 5]];

Mt. ((1- RtrWl) /. t-> time);

MtFmIiat = ((1 - RtrWf-’) /. t -> time) ;

MtFmLo= ((l- RtrW-) /.t-> time);

{cdfTR, cdfTRFmHat, cdfTRFmLo}.

Append [Drop [Transpose [{time, #]], -l], {70, l}]&/@ {Mt, MtFmIiat, MtEinLo};
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RtrW/. t->l

0.544555

PlotData [{cdfTRFmLo, cdfTRFmHat, cdfTR}, Xmin-> -.01, Xmax-> 70, Ymin-> O, Ymax-> 1,

DotSize-> {.0001, .008, .0125}, Style ->0,

JoinPoints-> True, FitTo-> {RtrW, t}];

0.8 ‘

0.6

0.2

0 10 20 30 40 50 60 70

{EV[cdfTR], Sqrt[Var[cdfTR]], Idf[cdfTR, {.025, .5, .95, .975}])

{3.48741, 6.83815, {0.0378193, 1.16603, 17.0596, 25.4481}}

{EV[cdfTRFmHat], Sqrt[Var[cdfTRFmHat]], Idf[cdfTR3%Hat, {.025, .5, .95, .975}]}

{7.02862, 11.8589, {0.0560921, 1.9295, 35.0626, 46.1341]]

{EV[cdfTRFmLo], Sqrt[Var[cdfTRFmLo]], Idf[cdfTR3tnLo, {.025, .5, .95, .975}]}

{12.9946, 17.7241, {0.0845741, 3.63964, 55.2843, 61.7931}}

Rt. (RtrW/. t-> time);

xy=Append[Drop[Transpose [{time, Rt}], -l], {70, O}];

IRt = Interpolation[xy, InterpolationOrder-> 1];

10.5/16.(* = US fraction moving to same county *)

0.65625

fms=SimulateCdf[ {Tri, {1/3, 2/3, 1}], 2000];

Idf[Cdf[fms], .05]

0.438716

C4
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Plotcdf [Calf[fins]];

1

0.8

0.6

0.4

0.2

0.2 0.4 0.6 0.8 1

tRange = Prepend[time, t];

Tbar. NIntegrate[IRt[t] ‘#, Evaluate [tRange]]&/@fms;

cdfTbar . Cdf [Tbar];

PlotCdf[cdfTbar, Xmin-> -.01, xmax-> 16];

1

0.8

0.6

0.4 ~

0.2

o 2.5 5 7.5 10 12.5 15

{EV[Tbar], Sqrt[Var[Tbar]], Idf[cdfl%ar, {.025, .5, .975}]}

{7.5984, 2.67068, {4.00903, 7.03101, 14.2792}}

D[aAFm, {Fro,2}]

am Log[a]2

cdfPm. TriangularCdf [1/3, 2/3, 1, 500];

{EV[cdfFm], Var [cdfl?ml}

{0.666667, 0.0185294}

cdfFm=TriangularCdf [1/3, 2/3, 1, 10000];

{EV[cdfEYa], Var [cdfpm]}

{0.666667, 0.0185186}

C5
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0.0185106464965580999 ‘-1

53.999626818615568

Rti. Transpose[xy] [[2]];

fmBar.2/3;

fmVar. 1/54;

( [ Log[Rti]2
pi=l - (Rti AfmBar) 1+

11
fmVar ;

2

pi = Append[Drop[pi, -l], 1];

cdfTangbr . Transpose [{time, pi)];

PlotCdf[cdfTangbr, Xmin-> -.01, --> 70];

1

0.8

0.6

0.4

0.2

I

O 10 20 30 40 50 60 70

PlotCdf[{cdfTangbr, cdfTbar}, Xmin-> -.01, Xma2c-> 70];

1

0.8

0.6

0.4

O 10 20 30 40 50 60 70

{EV[cdfTengbr], Sqrt[Var[cdfTangbr]], Idf[cdfTangbr, {.025, .5, .975}]}

{7.55321, 12.748, {0.0561443, 1.96772, 49.72451}

sdfTbar . StandardizeCdf [cdfTbar, time];

TBL[out . Prepend[Transpose [{time, N[Last/@sdfTbar, 8],

N[Last/@cdfTengbr, 8111, {Time, FTbar, FTangbr}ll

Time FTbar FTangbr
o 0 0.
0.1 0.000014065155 0.044528152
0.2 0.00002813031 0.085900584
0.3 0.000042195465 0.12439054
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0.4
0.5
0.6
0.7
0.8
0.9
1.
1.1
1.2
1.3
1.4

::2
1.7
1.8
1.9

L
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3.
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
4.
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
5.
5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
6.
6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
7.
7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
8.
8.1
8.2
8.3
8.4

0.00005626062 0.16024284
0.000070325776 0.19367728
0.000084390931 0.22489166

0.254064350.000098456086
0.00011252124
0.0001265864
0.00014065155
0.00015471671
0.00016878186
0.00018284702
0.00019691217
0.00021097733
0.00022504248
0.00023910764
0.00025317279
0.00026723795
0.0002813031
0.00029536826
0.00030943341
0.00032349857
0.00033756372
0.00035162888
0.00036569403
0.00037975919
0.00039382434
0.0004078895
0.00042195465
0.00043601981

0.2813565
0.30691402
0.33086927
0.35334255
0.37444339
0.39427172
0.41291884
0.43046832
0.4469968
0.46257462
0.47726652
0.49113209
0.50422633
0.51660002
0.52830013
0.53937017
0.54985047
0.55977846
0.56918892
0.57811422
0.58658448
0.59462778
0.60227029
0.60953645
0.616449110.00045008496 I

0.00046415012 0.62302958
0.00047821527 0.62929784
0.00049228043 0.63527256
0.0013753219 0.64097123
0.0046798441 0.64641023
0.0097212226 0.65160492

0.65656970.016294389
0.024222899
0.033351911
0.043545234
0.054682977
0.066658284
0.079376907
0.092754949
0.10671755
0.12119799
0.13613655
0.15147976
0.16717972
0.18319323
0.19948154
0.21600975
0.23274635
0.24966287
0.26673362
0.28393535
0.30124702
0.31864953
0.33612562
0.3536596
0.37123722
0.38884558
0.40647292
0.4241086
0.44174292
0.45936707
0.47697308
0.49455365
0.51196343
0.52877535
0.54498488
0.56061815
0.57570017
0.59025445
0.60430319
0.61786745
0.63096716
0.6436211
0.65584727
0.66766265
0.67908339
0.69012475

0.
0.
0.
0.
0.
0.
0.
0.

66131805
66586267
67021542
67438749
67838933
68223081
68592116
68946908

0.69288271
0.69616975
0.69933738
0.70239239
0.70534116
0.70818966
0.71094353
0.71360807
0.71618824
0.71868873
0.72111394
0.72346801
0.72575483
0.72797806
0.73014114
0.73224731
0.73429961
0.7363009
0.73825388
0.74016109
0.74202489
0.74384753
0.74563113
0.74737765
0.74908897
0.75076684
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.

75241291
75402873
75561577
75717539
7587089
7602175
76170234
76316451
76460501
7660248
76742478

C7
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8.5
8.6
8.7
8.8
8.9
9.
9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9
10.
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
55
60
65
70

0.70080134
0.71112707
0.72111508
0.73077791
0.74012765
0.74917561
0.75793282
0.7664095
0.77461566
0.78256085
0.79025397
0.79770389
0.80491887
0.81190674
0.81867513
0.82523141
0.88053089
0.9207822
0.9498595
0.97047554
0.98457918
0.99360366
0.99861864
J..

1.
1.
1.
1..
i..
1.

1.
1.
1.
1..7
J..

-L..
1.
1.
1.
1.
1.
1.
1..J...
1.

1.
1.
1.
1.
1.
1..
.,
J..

1.
1.
1.
1.
1.

0.76880579
0.77016864
0.77151407
0.7728428
0.77415548
0.77545275
0.77673519
0.77800336
0.7792578
0.78049899
0.7817274
0.78294347
0.78414763
0.78534025
0.78652171
0.78769236
0.79886871
0.80923462
0.81893815
0.82807078
0.83669313
0.84484873
0.8525714
0.85988918
0.86682654
0.87340553
0.8796464
0.88556805
0.89118824
0.89652371
0.90159033
0.90640318
0.91097659
0.91532422
0.91945913
0.92339381
0.9271402
0.9307098
0.93411365
0.93736239
0.94046627
0.9434352
0.94627875
0.94900617
0.9516264
0.95414801
0.95657927
0.95892806
0.96120185
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
1.

96340761
9655518
96764026
96967807
97166952
97361794
97552559
98444368
99193758
99706939

Put[out, PathName[Tbar-gll;

C8
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Appendix 3.D

Effective Genotoxic Dose

<< RiskQ’;

HardDrive = “Bogen”;

pathNsme [filename_, hardDrive_String: HardDrivel := Module [{file = filename }#

If [Head [file] = !❑ String, file . ToString [file] ];

StringJoin [hardDrive, ‘:Ken:TCE Air Force:Data:”, file]];

■ IllPUt Empirical (Derived) Distributions. RecreateinputDstfibutionsfromPhaselsWdy.E~sureinm~g-d.

w Log-Transform Utility Functions

GMGSDX: :usage .

“GMGSDX[MX,SDX] returns the geometric mean and geometric sdandard deviation of

a lognormal variate X that also has the specified arithmetic mean MX and

arithmetic sdandard deviation SDX, based on the method of moments. “;

MSDx::usage .

“MSDX[GMX,GSDX] returns the arithmetic mean and arithmetic sdandard deviation

of a lognormal variate X that also has the specified geometric mean GMx and

geometric sdandard deviation GSDX, based on the method of moments.”;

GMGSDxl::usage .

“GMGSDxl[cvWant,cv2] returns the GM and GSD of a lognormal variate Xl, such that

the product x1.X2 has the desired coefficient of variation (CV) . cvWant,

conditional on the lognormal variate X2 having an arithmetic mean and

CV equal to 1 and CV2, respectively, based on the method of moments.”;

MSDx[GMx_, GSDX_] :=Module[{mux, sigy},

sigy. Log[GSDx];

mux = GMxEA((sigy’2) /2);

mux{l, Sqrt[EA (sigyA2) -1]}]

GMGSDx[MY_, SDX.] :. Module[{muy, sigy},

sigy=Sqrt[Log[l+ (SDx/Mx) ‘2]];

muy=Log[Mx] - (sigyA2) /2;

E“{muy, sigy}]

GMGSDxl[cvWant_, cv2_] := Module[{myl },

muyl=Log[Sqrt [c:~zt~~l] ];

E’{muyl, Sqrt[-2muyl]]

]/, =Vwant >. CV2



D. Effective Genotoxic Dose D2

SABW = ToExpression [ReadList [PatbNeme [“sebwratioALL. txt” ], Word, RecordLists -> True] ];

Inhale . ToExpression [ReadList [PathWame [”inhaleALL. txt” ], Word, RecordLists -> True] ];

(*Note: Inhale in L/kg-d *)

Cone.ToExpression[ReadList [PatbNeme[”concentration.txt”] , Word, RecordLists -> True]];

(*Note: Cone in mg/L *)

Tbarang= Rest [Get[PathName [Tbarang]]];

TresBar= #[[{l, 2}]]&/@Tbarang;

TresAng= #[[{l, 3}]]&/@Tbarang;

Dimensions/@{SABW, Inhale, Cone, TresBar, TresAng}

{{27, 2}, {405, 2}, {405,2}, {145,2}”, {145, 2}}

EV/@{SABW, Inhale, Cone, TresBar, TresAng}

{325.881, 264.032, 0.0229323, 7.59939, 7.55321}

{BW, Vmet, VQ} .

{{LN, {4.23821, 0.22121}},

{LN, {-0.15154, 0.550528}}, {LN, {-0.0408868, 0.285961}}};

■ Constants

{TresBarAng, TresAngBarj

{7.59939, 7.55321}

.EV[#, Empirical->True]&/@{TresBar, Tres~9}

24
inhalebar. 12.9*710.74-i* — (* m3/kg-d *)

1000

0.102205

EFcon = 350; (*

ATcon = 25550; (*
concAng = 0.0223; (*
IngestBar= 0.0242: (*
InhaleBar = 0.102; (*
SABWBar = 325.881; (*
TresBarAng= 7.59358; (*
TresAngBar= 7.55321; (*

dly “)
d *)
mg/L *)
L/kg-d *)
m3/kg-d *)
cm2/kg *)
y *)

Y “)

■ Fractions metabolized (summary–see “E.EffectiveCytotoxic Dose”)

Correlationbetween VmetandFmo=O. 86

Correlationbetween VQandFmr=-0.75

Correlationbetween VmetandFmr=0.45

Fmo. Get[PathNeme[Pmo] ]; Fmr=Get [PatbName[-1 1;

CdfQ/@{3’mo, m.r)

{True, True]

{PmoBar, FmrBar}. {0.888543, 0.6732836};
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end

Note:
All distributions below are multiplied by Scale+ 000

■ Ingestion

■ EingBar =Uncertainty in Population-Average Level

{TresBar,Conc} = uncertain variates

{nsam, nsim} = {2000, 10};

cdfs= {TresBar, Cone};

Clear[fxn];
EFcon

fxn[t_, c_] :. IngestBar*t — c*FmoBar
ATcon

fxn[TresBarAng, ConcAng]

0.0000498795

Timing[{jen, calf,cvm} =QUAnalyze[cdfs,

{200.817 Second, Null}

TBL/@jen

{%%$&814 !%~%~i! ?%:k~?h’2

fxn, nsam, nsim, Scale+ 1000];]

DegFr
1

Fractile
0.01
0.05

Fval 0.5
0.477517’ 0.95

0.99
Mean

Value
0.0143149
0.0230076
0.0429802
0.0889072
0.134017
0.0507837

cm(%)
2.23118
0.210285
0.168471
0.414161 }
1.78008
0.514653

Variance 0.00710812 18.3718

{First[cdf], Last[cdf]}

{{0.000853119, O}, {4.43688, 1])

D3
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PlotCdf [{cvm, calf},Ymin+-. Ol, %min+ -.0001, Xnax+ .125];

1

0.8 -

0.6 ~

0.4 ~

0.2

o
0 0.02 0.04 0.06 0.08 0.1 0.12

Put[cdf, PathNsme [EingestBar]];

end

■ eEing>= Variability in Expected Level

{Ingest,TresAng,Fmo } = heterogeneous variates

{nsam, nsim} = {2000, 10};

Ingest= {LN, {Log[.0198], Log[l.88] ]};

cdfs . {Ingest, TresAng, Fmo};

Clear[fxn] ;
EFcon

fxn[ing_, t_, f_] := ing*t —ConcAng *f
ATcon

fxn[IngestBar, TresAngBar, FmoBar]

0.0000496144

Timing[{jen, calf,cvm} =QUAnalyze[cdfs, fxn, nssm, nsim, Scale+ 1000];]

{47.8167 Second, Null}

TBL/@jen

Fractile Value CVM(%)
0.01 0.000106569 3.27128
0.05 0.000509143 1.43336

JennrichChi2 DegFr P-adj
{~;:1&i143 ~~&!h 0.522666 3

0.5 0.0108513
0.995174’ 0.95 0.23658 ;:;:%71

0.99 0.531411 4.21273
Mean 0.0491639 0.747214
Variance 0.0111399 5.47589

D4
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PlotCdf[{cvm, calf),Ymin+-. Ol, Xmin+ -.0001, 2huAx+ .4];

1

0.8

0.6

0.4

0.2

()~
o 0.1 0.2 0.3 0.4

Put[cdf, PatbName [EingestAng]];

end

end

■ Inhalation Exposure

■ EinhBar = uncertainty in Population-Average Level

{TresBar,Conc} = uncertain variates

{AEshHBar, AEbaHBar, AEhHBar} = 1 / (IIV/@ {

{1. /#[[l]], #[[2] ]}&/@ RQ[Cdf, U, {4, 20}, 2000],

{1. /#[[l]], #[[2] ]}&/@ RQ[Cdf, U, {10, 100}, 2000],

{1. /#[[l]], #[[2] ]]&/@ RQ[Cdf, U, {300, 1200}, 2000]})

{9.94136, 39.0865, 649.213}

cdfs . {TresBar, Cone};

(

12.9

)

EFcon 1
fxn + FmrBar — *71.74-1*1 *t— —

1000 A!Ccon 24

( (

.129
480 (.76) +

AEsbHBar AE~~%r) ‘42; -7’;1 AE=ar)

fxn+ 0.0000136563 C t

Clear [fxn, jen, calf,cvm] ;

f=[t–r c–l := 0.0000136563095583647187’ C t

fxn[t, c] /. {c + ConcAng, t + TresBarAng}

2 .31252x10-K

Timing [{jen, calf,cvm} . QUAnalyze [cdfs, fxn, 2000, 10, Scale + 1000] ;]

{205.55 Second, Null}
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TBL/@jen

Fractile Value CVM(%)
0.01 0.000683362 2.05913
0.05 0.00106135 0.294054
0.5 0.00198916 0.19258
0.95 0.00412975 0.389326 }
0.99 0.00593213 1.01573
Mean 0.00235084 0.583042
Variance 0.0000146843 23.1052

{First[cdf], Last[cdf]}

{{0.0000407589, O}, {0.209696, 1}]

PlotCdf[{cvm, calf},Ymin+ -.01, bin+-.0001, Xmax+ .005];

1

0.8

0.6

0.4

0.2

0
0 0.001 0.0020.0030.0040.005

Put[cdf, PathName[EinhaleBar] ];

end

■ eEinh>= Variability unexpected Level

{Inhale,TresAng,Wshower,Whouse,ETshower,E~ath,E~ouse,Wshower,~bati,~house,

T13,T13,VQ,BW }= heterogeneous variates

gmgsd=GMGSDx@@#&/@N[ {{480. 160}1 {42. 15]. {.129F .052}. {.331 .22]]]

{{455.368, 1.38347}, {39.5532, 1.41408}, {0.119645, 1.47407}, {0.274577, 1.83382}}

{Wshower, Whouse, ETshower, ETbath} = ({LN, #}&/@Log[gmgsd])

{{LN, {6.12111, 0.324593}}, {LN, {3.67765, 0.346479}}, {LN, {-2.12323, 0.388026}},

{LN, {-1.29253, 0.606403}]}

{AEshower, AEbath, AEhouse, EThouse] =

({u,#}&/@{{4,20}, {10,100}, {300,1200}, {8,20}})

{{U, {4, 20}}, {u, {10, 100}}, {u, {300, 1200}}, {U, {8, 20}}}
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{InhaleBar, TresAngBar, ConcAng}

{0.102, 7.55321, 0.0223}

{VQ, BW}

{{LN, {-0.0408868, 0.285961}}, {LN, {4.23821, 0.22121}}}

Correlationbetween VQand Frnr= -0.75 (see ’’E. Effective Cytotoxic Dose”)

corr=Table[Table[O, {j]], {j, 13}];

corr=ReplacePart [Reverse [corr], -.75, {1, 1]]

{{-0.75, o, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, o}, {o, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

{o, o, 0, 0, 0, 0, 0, 0, 0, 0, o}, {0, o, 0, 0, 0, 0, 0, 0, 0, o}, {o, o, 0, 0, 0, 0, 0, 0, o},

{o, o, 0, 0, 0, 0, 0, o}, {o, o, 0, 0, 0, 0, o}, {o, o, 0, 0, 0, o}, {o, o, 0, 0, 0},

{o, o, 0,0}, {o, 0,0}, {o, o}, {0}}

Clear[fxn] ;

T13={T, 13};

cdfs= {3’IIu,VQ,BW, TresAng, Wshower.

Whouse, ETshower, ETbath, EThouse, AEshower, AEbath, AEhouse, T13, T13};

fxn[f_, vQ_, bw_, t_, wsh_, wh_, etsh_, etba_, eth_, aesh_, aeba–, aeh–, t13sh_, elsk–] :=

(
12.9

)

EFcon 1
f* — *bw-’4-l*vq t — ConcAng ~

1000 ATcon (

(

etsh etba

)(

.54

))

eth
wsh (.76 +.029 t13sh) —+— +wh (.76 +.029 t13h) — —

ae sh aeba .7 aeh

fxn[FmrBar, 1, 71, TresAngBar, 480, 42, .129, .33, 14, AEshHBar, AEbaHBar, AEh.HBar, O, O]

2.30022 x10-G

Tixning[{jen, calf,cvm} .QUAnalyze[cdfs, fxn, 2000, 10, Correlate+ corr, Scale+ 1000];]

{277.6Second, Null}

TBL/@jen

Fractile
0.01
0.05
0.5
0.95
0.99
Mean
Variance

Value
4.8772 x10-K
0.0000238177
0.000489184
0.010794
0.0233732
0.00225019
0.0000244482

CVM(%)
2.95986
1.50669
0.794377
1.05828 }
2.245
0.501055
5.8905
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PlotCdf[{cvm, calf},Ymin+-. Ol, Xmin+ -.0001, Xmax+ .0125];

1.

0.8

0.6

0.4

0.2 ~

o -
0 0.0020.0040.0060.008 0.010.012

Put [calf,

end

end

PathName [EinhaleAng] ];

■ Dermal Exposure

■ E&rrnalBar= Uncertain y in Population-Average Level

{TresBar,Conc} = uncertain variates

ETshower

{LN, {-2.12323, 0.388026}}

cdfs . {TresBar, Cone};

fxn+FmrBar *SABWBar* .65 *.263 *.129*t

fxn+ 0.0000410946 C t

Clear [fxn] ;

f= [t–r c_l := 0.0000410945965500063259’

fxn[t, c] /. {c+ ConcAng, t+ TresBarAng]

6.95883 XI O-G

Timing [{jen, calf,CVM} .QUAnalyze[cdfs,

{33.3833 Second, Null}

-c (1-+910-3

Ct

fxn, 2000, 10, Scale +1000];]

D8
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TBL/@jen

Max[ lArl] JemrichChi2 DegFr P-adj
{??~~571 0.0144425 0.41717 1 0.929433 ‘

Fractile Value CVM(%)
0.01 0.00213724 1.34291
0.05 0.00318948 0.37956
0.5 0.005998 0.123699
0.95 0.0123634 0.459695 }
0.99 0.0187893 1.62332
Mean 0.0071258 0.269769
Variance 0.000136076 8.27214

PlotCdf[{cvm, calf},Ymin+- .01, lZnin+ -.0001, Xmax+ .015];

1

0.8

0.6

0.4

0.2

0
0 o.oo21.004.0061 .oo80.olo.ola.o14

Put[cdf, PathName [EdermalBar]] ;

end

■ eEdermal> = Variability in Expected Level

{SA13W,Fs,Kp,ETshower,TresAng,T13,Frnr} = heterogeneous variates

CdfQ/@{SABW, TresAng}

{True, True]

{ConcAng, Fs, Kp, ETshower, T13}

{0.0223, Fs, KP, {LN, {-2.12323, 0.388026}}, {T, 13}}

T13={T, 13};

Fs={U, {.4, .9]};

KP= {N, {.263, .018}};

cdfs= {Fmr, SABW, Fs, Kp, ETshower, TresAng, T13];

Clear[fxn];

fxn[f_, sabw_, fs_, kp_, etsh_r t_, t13–] :=

EFcon
f*sabw*fs*kp*etsh*t

(

.76+ .029t13
—ConcAng 1-

)

10-3

ATcon 2

fxn[Fm.rBar, SABWEar, .65, .263, .129, TresAngBar, O]

6.92183 x10-6

D9
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Timing [{jen, cdf, cvm} .

{131.933 Second, Null}

TBL/@jen

QUAnalyze [cdfs,

Fractile Value cm(%)
0.01 0.0000165555 3.56479
0.05 0.0000796803 1.07369
0.5 0.00159787 0.732505
0.95 0.0331107 1.28518 }
0.99 0.0669827 1.42869

773 0.342052
1.74394

Mean 0.006847
Variance 0.000191493

fxn, 2000, 10, Scale+ 1000];]

DegFr P-adj
21 1. ‘

PlotCdf[{cvm, calf},Ymin+-.Ol, Xmin+ -.0001, -+ .03];

1,’.

0.8

0.6

0.4

0.2

0
-0 0.0050.01 0.0150.020.0250.03

Put[cdf, PathName[EdermalAng]];

end

end
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Appendix 3.E:

Effective Cytotoxic Dose

<< RiskQ’;

HardDrive . “Bogen”;

PathName [filename_, hardDrive_String: HardDrive] := Module[{file. filename},

If[Head[file] =!= String, file =ToString[file]] ;

StringJoin [hardDrive, “:Ken:TCE Air Force:Data:”, file]

1;

Inputs

■ Log-Transform Utility Functions

GMGSDx::usage .

“GMGSDX[MX,SDX] returns the geometric mean and geometric sdandard deviation of

a lognormal variate X that also has the specified arithmetic mean Mx and

arithmetic sdandard deviation SDX, based on the method of moments.”;

MSDx::usage .

“MSDX[GMX,GSDX] returns the arithmetic mean and arithmetic sdandard deviation

of a lognormal variate X that also has the specified geometric mean GMx and

geometric sdandard deviation GSDX, based on the method of moments.”;

GMGSDxl::usage .

“GMGSDxl[cvWant,cv2] returns the GM and GSD of a lognormal variate Xl, such that

the product x1*x2 has the desired coefficient of variation (CV) = cvWant,

conditional on the lognormal variate X2 having an arithmetic mean and

CV equal to 1 and CV2, respectively, based on the method of moments.”;

MSDx[GMc_, GSm_] :. Module[{mux, sigy},

sigy=Log[GSDx] ;

mux=GMxEA((sigyA2) /2);

mux{l, Sqrt[EA(sigyA2) -l]}]

GMGSDx[Mx_, SDx_] :. Module[{muy, sigy},

sigy=Sqrt[Log[l+ (SDx/Mx) ‘2]];

muy.Log[Mx] - (sigy’2)/2;

E’{muy, sigy}]

GMGSDxl[cvWant_, cv2_] := Module[{myl },

muyl=Log[Sqrt [c;~zt~~l ]];

E’{muyl, Sqrt[-2muyl]}

] /; Cvwant >= CV2

El
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■ Input Empirical (Derived) Distributions

Cone . ToExpression [

ReadList [PathName [“concentration. txt”, HardDrive], Word, RecordLists -> True]];

ConcAng = 0.0223; (* mg/L *)

Ingest= {LN, {Log[.0198], Log[l.88] ]};

IngestBar= 0.0242; (* L/kg-d *)

SABW= ToExpress ion[

ReadList[PathWame [“sabwratioALL .txtm, HardDrive], Word, RecordLists -> True]];

SABWBar = 325.881; (* cm2/kg *)

Fs= {U, {.4, .9]);

KP={N, {.263, .018}};

InhaleBar . 12.9* (71’.74); (* L/h *)

VQ={LN, Log[{.959938, 1.33104}]};

T13={T, 13};

AEshower. {U, {4, 20}};

ABshHBar . l/Ev[{l./#[[l]], #[[2]]}&/@RQ[Cdf,U, {4, 20}, 2000]];

{gmgsd=GMGSDx@@#&/@N[{{480, 160}, {.129, .052}}],

{Wshower, ETshower}= ({LN,#}&/@Log[gmgsd])}

{{{455.368,1.38347}, {0.119645,1.47407}},

{{LN, {6.12111, 0.324593}], {LN, {-2.12323, 0.388026}}}}

end

■ Feq (function)

~-E-kt
lim=Limit[ t -> o]

t (1-E-kz4) ‘

k
1 _ E-24 k

{limk.lim/.k -> .000000000001, l/limk}

{0.0416666, 24.}

~-E-kt
fx[k_, t_] :=

t (1-E-k24)

E2
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Ploti[{fx[k, .01], fx[k, .25], fx[k, .5], 24-1 + .57 k}, {k, 0.0001, .1],

AxesOrigin-> {0.0001, 0.04}, PlotRange-> {{0.0001, .1}, {0.04, .12}}];

0.12,
0.11

0.1
0.09
0.08
0.07
0.06
0.05

0.02 0.04 0.06 0.08 0.1

kval=Join[{.OOl}, Range[.005, .1, .0025]];

out. {fx[k, .01], fx[k, .25], fx[k, .5]} /.k+kval;

xy. Flatten[Transpose[ {kval, #}]&/@(out-24’-l), 1];

fiti=Fit[xy, {x, x~2},x] (* k . 0 - .1 *)

0.505316x+1.66078x2

fit[[2]] /fit[[l]]

3.28661x

ZZ=RQ[Q, N, {O, 1}, {.95, .99, .995}];

CV=O.60; (* . assumed CV for Vke; see below *)

gsd=EASqrt [Log[l+cvA 2]]; (* by method of moments *)

{ke=0.028*71’- .3, gsd, ke*gsdAzz}

{0.00779436, 1.74109, {0.0194043, 0.028315, 0.032516}}

data= ({0.24’-l}+#)&/@Prepend[~, {O, O}];

PlotData[data, FitTo+ {{24~-1+ fit, 24A-1+0.5053x}, x},

Xmin+ - .0001, 2QUSX+ .1, Ymin+ .0399, Ymax+ .12, Style +OO, Dashed+ {False, .025},

DotSize+ .0125];

0.1

0.08 -

0.06

0.04
0 0.02 0.04 0.06 0.08 0.1
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(* .-%relative error of linear approximation *)

Plot[100 ((24 A-l+ fit) / (24A-1+0.5053x) -l), {x, O, .06},

AxesOrigin +{-.0001, -.0001}, PlotRange + {{-.0001, .06}, {-.0001, 10}},

Frame +True, GridLines+ {

Range[.01, .05, .01], Range[2, 8, 2]}];

10

8 /

6

4 /

2 /

o ~
O 0.01 0.02 0.03 0s04 0.05 0.06

end

■ Body Weight (adult male + female), Vmax = Ve, and VQ

Cv = coefficientofvariation

Qa = alveolmventilationrate= 12.9*BWA.74 (Allen& Fisher,1993)

Wmax= Variability (unitless) in Vmax, where Vmax = 14.9*BWA.74 (in mg/h) (Allen & Fisher, 1993)

Vinhale= Variability (unitless) in Inhalation rate, where latter in L/h

VKe = Variability (unitless) in Ke, where Ke = 0.028 *BWA-.3 (in l/h) (Allen & Fisher, 1993)

From Finley et al. 1994 (CalEPA 1996, p. 10-7), the BW distribution for adult males& females is -LN and CV[BW] =

-0.22:

Clear [gsd] ;

{ev, sd] = {71., 15.9};

{CV = sd / ev, cvwant = 0.6, {BWgIU,BWgsd} . GMGSDX [ev, sd] ,

Log[ {BW~, BWgsd} ]}

{0.223944, 0.6, {69.2839, 1.24759}, {4.23821, 0.22121}}

CVwant = 0.60 for Vmax/BW assumed, based on Lipscombe et al. 1998 (Table 5). From Allen and Fisher (1993), the

maximum metabolic rate in mg/h is modeled as Vmax - 14.9*BWA0.7. Now let VVmax be LN-distributed with an

arithmetic mean of 1, where Vmet represents variation in Vmax not attributable to that in BW. Thus, Vmax -

14.9*Vmet*BWA.7, whence Vmax/BW - 14.9*Vmet*BWA-0.3. It follows from the method of moments that cv[BwA-.3] =

CV[BWA.3] = 0.06644,whence CV[Vmet] = 0.5950,GM[Vmet] = 0.8594,GSD[Vmet] = 1.734,Log[{GMIVmet],

GSD[Vmet] }]= {-0.15154,0.550528}.CVwant = 0.60forVKe isalsoassumed,basedon Fkher etal.1998 (Table8);thus

VKe = Wmax = Vmet.

{{01, 02} .MSDx[a BWgm’ -.3, BWgsd~ -.3], cvCorr=02/ol]

{{0.281039a, 0.0186711a}, 0.066436}

E4
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{{01, 02} =MSDx[a BWgm A-.3, BWgsd A.3], cvCorr.02/ol}

{{0.281039a, 0.0186711a}, 0.066436}

{o. GMGSDxl[cvWant, cvCorr], {muyvmet, sdyvmet} =Log[o]}

{{0.859383, 1.73417}, {-0.15154, 0.550528}}

MSDx@@o

{l., 0.594999]

(* BY definition, the CV of (BWA.3 * Vmet) . *)

Sqrt[EA (sdyVmetA 2+Log[BWgsdA .3]’2) -1]

0.6

{BW= {LN, Log[{BWgm, BWgsd}]}, Vmet= {LN, {muYVmet, sdyvmet}}}

{{LN, {4.23821, 0.22121]}, {LN, {-0.15154, 0.550528}}}

FromCalEPA/0HEA(1996,Stochastic Analysis, p. 3-31 -3-32; cit. above), cvA=CV[24*Q/BW]= CVIQtot/BW]= -

0.3, where Qdenotes total ventilation ratein L/h. From Allen and Fisher (1993), alveolm ventilation ratein Lhismodeled

as Q-12.9 *BW’W7, and Qtot-kQ forsomeconstantk. Nowlet VQbe LN-distributed withanarithmetic meanofl,

where VQrepresents variation in Qnotattributable tothatin BW. Thus, Q- 12.9*VQa*BWA.7, whence QfBW -

12.9*VQ*BWA-0.3. It follows from the method of moments that CV[BWA-.3] = CV[BWA.3] = 0.06644, whence CV[VQ] =

0.2919, GM[VQ] = 0,9599, GSD~Q] = 1.331, Log[{GM[VQ], GSD[VQ] }] = {-0.0408868, 0.285961 }.

{{01, 02} .MSDx[a BWgm A-.3, BWgsd A-.3], CVBW3 =02/01)

{{0.281039a, 0.0186711a}, 0.066436]

{o . GMGSDX1 [0.3, CVBW3] , {muyX, sdyX} = Log [o]]

{{0.959938, 1.33104}, {-0.0408868, 0.285961])

{{MX, sdx} =MSDx@@o, CVx=Sdx/MX}

{{1., 0.291908}, 0.291908}

(* By definition, the CV of (BWA.3 * X) . *)

{S~t[EA (sdyXA2+ Log[BWgsdA.3]A2) -l],

((1+cvBW3A2) (l+cvX’2)-l)A .5}

{0.3, 0.3}

{BW,Vmet, VQ} =
{{LN, {4.23821,0.22121}},

{U, {-0.15154,0 .550528 }}, {LN, {-0.0408868.0.285961}}};

E5
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■ Fractions metabolized

■ Oral (fmo)

Heterogeneous variates ={ Pb,Vmet,VQ}

{nsam, nsim} = {2000, 10};

Pb=NormalCdf[10.2, 1.6, 405];

cdfs = {Pb, VQ, Vmet};

Clear [fxn] ;

fxn[pb_, va, vmet-1 := (l+vq (vmet (.77pb +2.547))-’)-’

fxn[lo.2, 1, 1]

0.912288

sim=Table[SimulateCdf [cdfs, 500, TestCdf+False, Report +Append], {10}];

{sires,rval, jens} .Transpose[sim];

jen.Last[Sort[Last/@jens] ] (* Max[chi2],df,pval *)

{0.398663, 3, 0.940519}

corr= First[Correlation[{# [[3]], fxn@@#&/@Transpose[#] },

Type+Spearman, Report+False]]&/@sims;

Stats[corr, Report]

Correlationbetween VmetandFmo =0.86

corr. First[Correlation[ {#[[2]], fxn@@#&/@Transpose[#] ],

Type +Spearman, Report+False]]&/@sims;

Stats[corr, Report]

Mean 95%LCL
-0.43378 ;D0133479 ~~31

95%UCL Min Max
-0.443329 -0.424232 -0.45298 -0.417722 ?0

Correlationbetween VQandFmo =-0.43

-1

corr. First[Correlation[{ (1+ ~~~~~~ (~~~~1~
))

+3.307 , fxn@@#&/@Transpose [#]},

Type+Spearman, Report +False] ]&/@sims;

Stats[corr, Report]

Mean
0.825436 ~D00851143 ;?~61 ;5;?g?47 ;?;;?;24 ~;1263 ?;37117 ?0

Correlationbetween FrnrandFmo=O. 83

Timing[{jen, calf,cvm] .QUAnalyze[cdfs, fxn, nsem, nsim, Scale+ l];]

{1094.55 Second, Null]

E6



E. Effective CytotoxicDose E7

T.BL/@ jen

Max[l Arl] JennrichChi2 DegFr Pval
{581::474 0.0100917 0.390451 3 0.942208 ‘

Fractile Value CVM(%)
0.01 0.680326 0.395848
0.05 0.765428 0.103074

0.90237 0.0203722
::;5 0.963376 0.0237576 }
0.99 0.975746 0.0236983
Mean 0.888543 0.00239931
Variance 0.00395071 0.863083

{First[cdf], Last[cdf]}

{{0.476647, 0}, {0.99139, 1}}

PlotCdf[{cvm, calf},Ymin+- .01, Xmin+ .495, Xmsx+ l];

1

0.8

0.6

0.4

0.2

0
‘0.5 0.6 0.7 0.8 0.9 1

Fmo=StandardizeCdf [calf,405];

end

■ Inhalation anddermal(fmr)

Heterogeneous variates ={ Pb,Vmet,VQ}

{nsam, nsim} . {2000, 10};

cdfs = {Pb, VQ, Vmet};

Clear[fxn];

fa[pb_, w_. vmOt_] ‘=(1+%(=+ ’.’’’’))-’
fxn[lo.2, 1, 1]

0.68891

corr. First[Correlation[{# [[2]], fxn@@#&/@Transpose[#] ],

Type + Spearman, Report+False]]&/@sims;

Stats[corr, Report]

Mean 95%LCL
-0.753049 ~D00720099 :!?~24 -0.758201

95%UCL Min Max
-0.747898 -0.764949 -0.741702 ?0
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Correlation between VQ and Fmr = -0.75

corr = First [Correlation {# [[3]], fxn@@#& /@Transpose [#]},

Type + Spearman, Report + False] ]& /@sires;

Stats [corr, Report]

Mean
0.453276 ~D00968226 ;??55 ~?%;5 ;%%02 ?:36792 ;%66869 ?0

Correlationbetween VmetandFmr=0.45

Timing[{jen, calf,cvm} =QUAnalyze[cdfs, fxn, nsam, nsim, Scale +l];]

{1096.72 Second, Null}

TBL/@jen

{~~~g~ !?~~~i$ :?~g;;?h12 ?gFr ~;9058

{First [calf],Last[cdf]}

{{0.264383, 0], {0.890069, 1}}

Fractile Value CVM(%)
0.01 0.454963 0.559908
0.05 0.527838 0.151762
0.5 0.680315 0.0680913
0.95 0.794697 0.0632056 }
0.99 0.830531 0.090292
Mean 0.673284 0.0011681
Variance 0.00656651 0.240044

PlotCdf[{cvm, calf},Ymin+-.Ol, Xmin+ -.0001, Xmax+ l];

1

0.8

0.6

0.4

0.2

0
“O 0.2 0.4 0.6 0.8 1

Fmr. StandardizeCdf [calf,405];

Put[lWo, PathName[”Fmo”]];

Put[Fmr, PathName[”Fmrm]];

Correlation between VmetandFmo= 0.86

Correlationbetween VQandFmr=-O.75

Correlation between VmetandFmr=0.45
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Fmo=Get [PathName[~]]; Fmr=Get [PatbName[3tnr]];

CdfQ/@{Rno, m.r}

{True, True}

{l?moBar, PmrBar} = {0.888543, 0.6732836];

PlotCdf[{Fhr, PMO}, Ymin+ -.001, lhuin+ .398, lhax+l];

1

0.8

0.6

0.4

0.2

0
0.4 0.5 0.6 0.7 0.8 0.9 1

end

end

Note: All distributions below are ~scaled

■ Ingestion Effective Dose (mg TCA/L plasma)

■ <ECingest> = Variability in Expected Level

{VolDist,BW,VKe,Fmo,Ingest } = heterogeneous variates

Correlation between VolDist and BW is assumed to be -.5

Correlation between Vmet =Ve and Fmo is assumed to be O

{nsem, nsim} . {2000, 10};

Ingest = {LN, {Log[.0198] , Log[l.88] });

VolDist = {U, {.052, .152 }}; (* L/kg *)

cdfs . {VolDist, BW, Vmet, Fmo, Ingest];

corr= {{-.5, O, 0, O}, {O, O, O}, {0, O}, {O}};

Clear [fxn] ;

fxn [u_, bw_, vmet_, fmo_, ing_] :. ing * ConcAng * fmo *
[

.4104

[

1.488 bw”3
+ .5053

u vmet 11

fxn[.lr 70, 1, .7, IngestBar]

0.00903536

E9
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Timing [{jen, calf,cvm} =QUAnalyze[cdfs, fxn, nsam, nsimr Scale+l, Correlate +corr]; ]

{85.7333 Second, Null}

TBL /@ jen

Fractile Value CVM(%)
0.01 0.00149497 1.41686
0.05 0.00265397
0.5

0.846307
0.0110646 0.571085

0.95 0.0476501 0.587508 }
0.99 0.0879985 2.44676
Mean 0.0163479 0.171948
Variance 0.000306492 3.01902

PlotCdf[{cvm, calf},Ymin+-.Ol, Xmin+ -.0001, %max+ .07];

1

0.8

0.6

0.4

0.2

0
0 0.01 0.020.030.040.050.060.07

sdf=StandardizeCdf [calf,404]; EV[sdf, Empirical ->True]

0.0161848

Put[sdf, PathName[ECingestAng]] ;

ECingestAng .Get[PathName [ECingestAng] ];

ECingestAngBar=O .0161848;

end

■ ECingestBar =Uncertaintyin Population-Average Level

{Conc}=uncertain variate

{
ECingestAngBar

cdf = #[[l]], #[[2]]}&/@Cone;
ConclWg

Put[cdf, PathName[ECingestBar] ];

ECingestBar .Get[PathName [ECingestBar] ];

end

end
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■ Inhalation

■ <ECinhale> =

Effective Dose (mg TCA/L plasma)

Variability in Expected Level

{VolDist,BW,VKe,Fm,Inhale,Wshower,ETshower,~shower,Tl3 } = heterogeneous variates

Correlation between Vmet = Ve and Fmr is assumed to be O

Correlation between VolDist and BW is assumed to be -.5

Correlation between VQ and Fmr = -0.75

{InhaleBar, ConcAng}

{302.358, 0.0223}

{nsamr nsim} . {2000, 10};
Clear [fxn] ;
cdfs . {VolDist, BW, Vmet, VQ, Fnw, Wshower, ETshower, AEshower, T13 };
corr. {{- .5, 0, 0, 0, 0, 0, or o}, {o, o, 0, 0, 0, 0, o},

{o, o, 0, 0, or o}, {-.75, o, 0, 0, O}r {o, o, 0, O}r {o, o, 0}, {0, 0}, {0}};

f= [u_, ti_, vmet_, VCL, frm_, wsh_, etsh_, aesh_. t13_]
“(+ (1::’ + ‘;:5)

) (

wsh (.76 + .029 t13)
vq * Conctig

)
fmr * etsh

1000 aesh

fxn[.1, 70, 1, 1, .7, 480, .129, AEshHBar, O]

0.00637328

Timing[ {jen, cdf, cvm} . QUAnalyze [cdfs, fxn, nsam, nsim, Scale + 1, Correlate + corr] ;]

{179.167 Second, Null}

TBL /@ jen

Fractile Value cm(%)
0.01 0.000715826 1.62597
0.05 0.00126666 0.60722
0.5 0.00538319 0.46861
0.95 0.0259794 1.09888 }
0.99 0.0489231 1.70975
Mean 0.00844442 0.179915
Variance 0.0000944227 3.53902

El 1
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PlotCdf [{cvm, calf},Ymin+-. Ol, Xmin+ -.0001, xmax+ .05];

1

0.8

0.6

0.4

0.2

0
0 0.01 0.02 0.03 0.04 0.05

sdf .StandardizeCdf[cdf, 404]; EV[sdf, Empirical +True]

0.00835208

Put[sdf, PathKLame[ECinhaleAng]] ;

ECinhaleAng ❑Get[PathName [ECinhalehg] ];

ECinhaleAngBar . 0.00835207927948548345’;

end

■ ECinha]eBar =Uncertiinty in Population-Average Level

{Conc}=uncertain variate

ECinhaleAngBar
calf= { #[[l]]r #[[2]]}&/@Cone;

Conctig

Put[cdf, PathName[ECinhaleBar] ];

ECinhaleBar = Get[PathName [ECingestBar] ];

end

end

■ Dermal Effective Dose (mg TCA/L plasma)

E .@dermal> = Variability in Expected Level

{VolDist,BW,Vmet,Fmr, SABW,Fs,Kp,ETshower,T13 } = heterogeneous variates

Correlation between Vmet = Ve and Fmr is assumed to be O

Correlation between VolDist and BW is assumed to be -.5

E12
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{nsam, nsim] = {2000, 10};

corr= {{-.5, O, 0, 0, 0, 0, 0, O}, {O, O, Or O, 0, 0, O},

{0, o, 0, 0, 0, o}, {o, o, 0, 0, o}, {o, o, 0, o}, {o, 0, o}, {o, o}, {0]};

cdfs= {VolDist, BW, Vhet, Fmr, SABW, Fs, Kp, ETshower, T13};

Clear [fxn] ;

fxn[u_, bw_, vmet_, fmr_, sabw_, fs_, kp_, etsh_, t13_] :=

(
.76+ .029t13

sabw*fs *kp*etsh*ConcAng 1-
)
10-3* fmr*

2 (

.4104

(

1.488 bW”3

+ .5053
u met 11

fxn[.1, 70, 1, .7, SABWBar, .65, .263, .129, O]

0.00166356

(CdfQ[#] l]RQITest, #[[l]], #[[2] ]])&/@cdfs

{True, True, True, True, True, True, True, True, True]

Timing [{jen, calf,cvm} ❑QUAnalyze[cdfs, fxn, nsam, nsim, Scale+l, Correlate +corr]; ]

{173 .433 Second, Null}

TBL /@ jen

Fractile Value CVM(%)
0.01 0.000268902 0.97206
0.05 0.000445612 0.780994

{?%AEJ795 :%4KLA ‘i?E;;:hchi2 !?:gFr ::’dJ’ ~:;;
0.00163022
0.00625184 ::;~:~;:}
0.0111429

M;an 0.00228462 0:1228
Variance 5.0004x10-G 2.93471

PlotCdf[{cvm, calf},Ymin+-.Ol, Xmin+-.0000l, -+ .01];

1

0.8

0.6

0.4

0.2

n
‘o 0.002 0.004 0.006 0.008 0.01

sdf. StandardizeCdf [calf,404]; EV[sdf, Empirical +True]

0.00226194

Put[sdf, PathName[ECdermalAng]] ;

ECdermalAng .Get[PathName [ECdermalAng] ];

ECdermalAngBar . 0.00226194038376105455’;

E13
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end

■ EdermalBar = Uncertainty in Population-Average Level

{Cone } = uncertain variates

{
ECdermalAngBar

cdf = #[[l]], #[[2]]}&/@Cone;
ConcAng

Put[cdf, PathName [ECdermalBar]];

ECdermalBar = Get [PathNeme [ECdermalBar] ];

end

end



F. Effective Dose Correlations Fl

Appendix 3.F

Effective Dose Correlations

<< RiskQ’;

HardDrive = “Bogen”;

PathName [filename_, hardDrive_String: HardDrive] :. Module [{file = filename },

If [Head [file] =!= String, file =ToString[file]];
s&ingJoin[har~rive, ‘:Ken:TCE Air Force:Data:n, file]

1;

Inputs

■ Log-Transform Utility

GMGSDx::usage =

Functions

“GMGSDX[MX,SDX] returns the geometric mean and geometric sdandard deviation of

a lognormal variate X that also has the specified arithmetic mean MX and

arithmetic sdandard deviation SDX, based on the method of moments.”;

MSDx::usage =

“MSDX[GMX,GSDX] returns the arithmetic mean and arithmetic sdandard deviation

of a lognormal variate X that also has the specified geometric mean GMx and

geometric sdandard deviation GSDX, based on the method of moments.”;

GMGSDX1: :usage =

“GMGSDxl[cvWant,cv2] returns the GM and GSD of a lognormal variate Xl, such that

the product X1*X2 has the desired coefficient of variation (CV) . cvWant,

conditional on the lognormal variate X2 having an arithmetic mean and

CV equal to 1 and CV2, respectively, based on the method of moments.”;

MSDx[GMx_, GSDX.] :. Module[{mux, sigy},

sigy. Log[GSDx] ;

mux=GMxEA((sigyA2) /2);

mux{l, Sqrt[E’ (sigyA2) -1]}]

GMGSDx[~_, SDx_] := Module[{muy, sigy},

sigy = Sqrt[Log[l+ (SDx/Mx) ‘2]];

~Y =Log[Mx] - (sigyA2) /2;

EA{muy, sigy}]

GMGSDxl[cvwant_, cv2_]

muyl.Log[sqrt ~
Cvwant’+lJJ;

:= Module[{myl },

r CV22+1 .7

] /:
EA{muyl, Sqrt[-2muyl]}

cvwant >= CV2
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■ Input Empirical (Derived) Distributions

Clear [Tbarang, TresBar, TresAng] ;

Tbarang = Rest [Get [PathName [Tbarang] ]];

TresBar = #[ [{1, 2}] ]&/@ Tbarang;

TresZ+ng = #[ [{1, 3}] ]&/@ Tbarang;

TresBarAng = 7.59358; (* y *)

TresAngBar = 7.55321; (* y *)

EFcon = 350; (* d/y *)

ATcon = 25550; (* d *)

Cone = ToExpression [

ReadList [PatbName [“concentration. txtn, HardDrive], Word, RecordLists -> True]];

ConcAng . 0.0223; (* mg/L *)

Ingest= {LN, {Log[.0198], Log[l.88] }};

IngestBar = 0.0242; (* L/kg-d *)

ECingestAngBar = 0.0161848;

SABW= ToExpress ion[

ReadList[PathName [“sabwratioALL .txt”, HardDrive], Word, RecordLists -> True]];

SABWBar . 325.881; (* cm2/kg *)

Fs={U, {.4, .9}};

KP={N, {.263, .018}};

ECdermalAngBar= 0.002261940;

Inhale = ToExpression [ReadList[PatbName [“inhaleALL. txt”], Word, RecordLists -> True]];

(*Note: Inhale in L/kg-d *)

IrihaleBarC . 12.9* (71A .74); (* L/h *)

InhaleBarG . 0.102; (* m3/kg-d *)

ECinhaleAngBar . 0.0083520793;

{BW, Vmet, VQ} .

{{LN, {4.23821, 0.22121}},

{LN, {-0.15154, 0.550528}}, {LN, {-0.0408868, 0.285961}}};

VolDist= {U, {.052, .152}}; (* L/kg *)

T13={T, 13};

{AEshHBar, AEbaIiBar, AEhHBar}.1/(EV/@ {

{1./#[[l]],#[[2]]}&/@RQ[Cdf, U, {4,20}, 2000],

{1./#[[l]],#[[2]]}&/@RQ[Cdf, U, {10, 100}, 2000],

{1./#[[l]],#[[2]]}&/@RQ[Cdf, U, {300,1200}, 2000]});

~gsd=GNGSDx@@#&/@N[ {{480, 160}, {42, 15}, {.129, .052}, {.33, .22}]];

{Wshower, whouse, ETshower, ETbath} . ({LN, #}&/@Log[gmgsd]);

{AEshower, AEbath, AEhouse, EThouse} =

({U, #}&/@{{4, 20}, {10, 100}, {300, 1200}, {8, 20}});

end
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■ Fractions metabolized (summary–see Effective Cytotoxic Dose.nb)

Correlation between VolDist and BW = -0.50 (assumed approximation)

Correlation between Ve and Fmo =0, and between Ve and Fmr = O

Correlation between VQ and Fmo = -0.43

Correlation between VQ and Fmr = -0.75

Correlation between Fmr and Fmo = 0.83

{FmoBar, FmrBar} = {0.888543, 0.6732836};

Clear [3tno,Fmr] ;

tio = Get [PatbName [FIIIO]]; Fmr = Get [PathName[Fmrl 1;

CdfQ/@{31no, Fmr)

{True, True }

end

end

■ Effective Dose Uncertainty

cd fGingBar = {TresBar, Cone};
EFcon

fxnGingBar [t_, c_] := IngestBar * t = c * PmoBar;

cdfC ingBar = {Cone};

ECingestAngBar
fxnCingBar [c_] := c ;

ConcAng

cd fGinhBar = {TresBar, Cone};

(
12.9

)
fxnGinhBar[t_, c_] := FmrBar ~ * 71”74-1* 1 * t

EFcon 1

( (

.129
—c— 480 (.76) +
ATcon 24 AEshHBar AE~~;ar) ’42 (.76%) AElarl;

cdf CinhBar = {Cone};

ECinhaleAngBar
fxnCinhBar [c_] := c .

ConcAng ‘

cd fGderBar = {TresBar, Cone};

fxnGderBar [t_, c_] := FinrBar*SA13WBar* .65*.263 *.129*t
=c(l-+110-3;

cdfCderBar . {Cone};

ECdermalAngBar
fxnCderBar [c_] := c .

ConcAng ‘

All 6 functions above are linear functions of either c or c*t; thus: all those involving just c are 100% correlated, all those

involving just c*t are 100% correlated, and correlations between those involving c vs. c*t are given by:
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cdfs= {TresBar, Cone];

sim=Table[SimulateCdf [cdfs, 500, TestCdf+ False, Report+Append], {1O}];

{sires,rval, jens} .Transpose[sim];

jen=Last[Sort[Last/@jens] ] (* Max[chi2],df,pval *)

{0.339124, 1, 0.560336)

corr=First[Correlation[{# [[2]], #[ [1]] *#[[2]]},

Type+Spearman, Report +False] ]&/@sims;

Stats[corr, Report]

Mean 95%UCL Min
0.487765 8D0103941 :!!?39 i?i:;;29 0.4952 0.470525 ??~06052 ?0

end

F4
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■ Effective Dose Variability

cdf GingAng = {Ingest, TresAng, Fmo};
EFcon

fxnGingAng [ing_, t_, f_] := in9 * t — Conchg * f;
ATcon

cd fCingAng = {VolDist, BW, Vmet, Fmo. Ingest};

corCingAng = {{- .5, 0, 0, o}, {o, o, o}, {o, o}, {o}};

fxnCingAng [u_, bw_, vmet_, fmo_, in9_] := in9 * ConcAn9 * fmo *
[

.4104

(

1.488 bw”3

11
+ .5053 ;

u met

cdf GinhAng = {Fmr, VQ, BW, TresAng, Wshower,

Whouse, ETshower, ETbath, EThouse, AEshower, AEbath, AEhouse, T13, T13};

corr=Table [Table [O, {j}], {j, 13}];

corGi33hAng ❑ ReplacePart [Reverse [corr] , -.75, {1, l}]; fxnGinbAng[f_, v=,

b’w_rt_ , wsh_, wh_, etsh_, etba_, eth_, aesh_, aeba_, aeh_~ t13sh—t t13h_l :=

[

12.9

)

EFcon 1
f* — *bw”74-1*vq t — ConcAng ~

1000 ATcon (

(

et sh etba

)(

.54

))

eth
wsh (.76+ .029 t13sh) —+— +wh (.76 +.029 t13h) — — ;

aesh aeba .7 aeh

cdfCinhAng. {VolDist, BW, Vmet, VQ, Fmr, Wshower, ETshower, AEshower, T13};

corCinbAng= {{-. 5, or o, 0, 0, 0, 0, o}, {o, o, 0, 0, 0, 0, o},

{o, o, 0, 0, 0, o}, {-.75, 0, 0, 0, o}, {o, o, 0, o}, {o, o, o}, {0, 0}, {0}};

fxnCinlUing [

u_, bw-, met–, VCI_, f~_, wsh.._,etsh_. aesh–, t13_l
‘=(+ (1::5 + 6;:51

) (
wsh (.76+ .029 t13)

vq * ConcAng
)
fmr * etsh;

1000 aesh

cd fGderAng. {Fmr, SABW, Fs, Kp, ETshower, TresAng, T13};

fxnGderAng[f_, sabw_, fs_, b–, etsh–t t_. t13_] :=

EFcon

(

.76+ .029t13
f*sabw* fs*kp*etsh*t —ConcAng 1-

)
10-3;

ATcon 2

cd fCderAng= {VolDist, BW, Vmet, Fmr, SABW, Fs, Kp, ETshower, T13};

corCderAng= {{- .5, 0, 0, 0, 0, 0, 0, 0}, {o, o, 0, 0, 0, 0, 0],

{o, o, 0, 0, 0, o}, {o, o, 0, 0, o}, {o, o, 0, o}, {0, 0, 0}, {0, 0}, {0}};

fxnCderAng[u_, bw_, vmet_, fmr_, sabw_, fs_, kp_, etsh_, t13–] :=

(
.76+ .029t13

sabw*fs *kp*etsh*ConcAng 1-
)
10-3* fmr*

2 [

.4104

(

1.488 W3

))
+ .5053 ;

u vmet

Function {argument positions}:

fxnGingAng[ing_,t_,f_]

{7,8,5}

fxnCingAng[u_,bw_,vmet_,fmo_,ing-]

{1,2,3,5,7}

F5
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fxnGiting[f_,vq_,bw_,t_,wsh_,wh_,eKh_,etba_,eti_,aesh_,aeba_,aeh-,tl 3sh_,t13h_l

{6,4,2,8,9,10,11,12,13,14,15,16,17,18}

fxnCinMng[u_,bw_,vmet_,vq_,fm_,wsh-,ekh-,aesh_,tl 3_I

{1,2,3,4,6,9,11,14,17}

fxnGderAng[f_,sabw_,fs_,kp_,etsh-,t-,tl 3-1

{6,19,20,21,11,8,17}

fxnCderAng[u_,bw_,vmet_,fm_,sabw_,fs_,h-,etsh-,tl 3-1

{1,2,3,6,19,20,21,11,17}

cdfs. {VolDist, BW, Vmet, VQ, Fmo, Fmr, Ingest, Trestig,

Wshower, Whouse, ETshower, ETbath, EThouse, AEshower,

AEbath, AEhouse, T13, T13, SABW, Fs, Kp}; (* n=21 *)

(CdfQ[#] llRQITest, #[[l]], #[[2]]]) &/@cdfs

{True, True, True, True, True, True, True, True, True, True, True, True, True,

True, True, True, True, True, True, True, True}

CorrelationbetweenVolDistandBW= -0.50(assumed approximation)

CorrelationbetweenVeandFmo=O, andbetweenVe andFmr=O

CorrelationbetweenVQandFmo=-0.43

CorrelationbetweenVQandFmr=-O.75

CorrelationbetweenFmrandFmo=0.83

corr=Reverse [Table[T%.ble [0, {j}], {j, 20}]];

(corr=ReplacePart[corr, #[[l]], #[[2]]])&/@{

{-.5, {1,1}}, {-.43, {4,1}}, {-.75, {4,2]}, {.83, {5,1}}};

Clear[o];

xx= {a, b, c, d, e, f, g,

h, i, j,k, l,m,n, O,P, q, r, s, t,u, v,w, x,y, z};xx

{a, b,c, d,e, f,g,h, i,j, k, 1, m, n, o, p, q, r, s, t, U, v,

Definefxnshereeach asafunctionofelementsoftheconvenientdummy variatexx:

fxns ❑ {
{fxnGingWg, {7, 8, 5}},

{fxnCingAmg, {1, 2, 3, 5, 7}},

w, x, y, z}

{fxnGi~g, {6, 4, 2, 8. 9, 10, 11, 12, 13, 14, 15, 16, 17, 18}},
{fxnCi~g, {1, 2, 3, 4, 6, 9, 11, 14, 17}},

{fxnGderAng, {6, 19, 20, 21, 11, 8, 17}},

{fxnCderAng, {1, 2, 3, 6, 19, 20, 21, 11, 17}}};

MapThread[#l@@xx[ [#2]]&, Transpose[fxns]]

{0.000305479 egh,
0.00915192 (0.5053 + l“48~b0’3) eg

a

1-64195 x10-7 dfh (i (~+ ~) (0.76 +CI.1329q)+ 077142gjm$.’c+OOZgrj)
bO.26

9.15192 X 10-6 ( ‘ba:$5+ -)dfik(0.76 +0.029q)

an

3.05479 x10-7 fhk(l+; (-0.76 -0.029 q))stu,

9.15192 XI O-G (0.5053 + l“48~b0”3)fk(l+~(-0.76 -0.029 q))stu1

a

F6
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Select a series of 50 simulated-variate sets that each have a 21-variate correlation matrix (=corr, defined above) that is not

significantly different than corr. Below, 20 of a total of 70 sets tried qualify for use using a p-value of <0.01 to reject:

Timing [

sim. Table [(Pm [i]; SimulateCdf [calfs,500, Correlate + corr, Report + Append] ), {i, 70}] ;

{sires,rval, jens } = Transpose [sire];

jen = Last [Sort [Last /@jens] ] (* Max[chi2] ,df,pval *)]

{Sssb.second, {35-2754, 2107 1.}}

Dimensions [sires]

{70, 21, 500}

sel . Select [0 = Last/@ jens, Last [#] > O.Ol&];

{pos=Position[o, #] [[l, l]]&/@sel, Length [pos]]

{{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26,

27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49,

50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70},

70}

Union[Last/@Last /@jens]

{l.}

OKsims = sims[[Take[pos, 50]]]; nn= Length[OKsimsl

50

corm= Table [First [Correlation [

MapTbread[#l@@OKsims[ [i]] [[#2]]&, Transpose[fxnsll,

Type +Spearman, Report+False]], {i, nn}];

Meancorr, SDM[corr] ,andCVM[corr] valuesfo~

GingAng CingAng GlnhAng CinhAng GderAng CderAng

ev=Plus@@corm/nn; TBL[N[ev, 3]]

1. 0.233 0.878 -0.00269 0.894 0.000496
0.233 1. -0.0088 0.421 0.00439 0.514
0.878 -0.0088 1. 0.187 0.918 0.035
;Oi;;269 0.421 0.187 1. 0.0766 0.649

0.00439 0.918 0.0766 1, 0.177
0:000496 0.514 0.035 0.649 0.177 1.

Sdm = ~(Plus@@(((#-ev)A2)&/@corm) )/(xuI(IIII-l));TBLINIsdM, 3]]

o 0.0022 0.000722 0.00207 0.000508 0.0018
0.0022 0.00207 0.00183 0.00223
0.000722 :.00207 0

0.00171
0.0022

0.00207
;.;:CI:;4 0.00192

0.00183 0.0022
0.000508 0.00223 0.000564 8.00205 0.

0.00159
0.00214

0.0018 0.00171 0.00192 0.00159 0.00214 0
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cvm = Abs[100 sdm/ev] ; TBL[N[cvm, 3]]

o 0.946 0.0822 76.7 0.0568
0.946 23.5 0.435 50.8
0.0822 ;3.5 O 1.17 0.0614
76.7 0.435 1.17 0 2.68
0.0568 50.8 0.0614 2.68
364. 0.333 5.49 0.245 ?.21

364.
0.333
5.49
0.245
1.21
0

end



G. Potency G1

Appendix 3.G

Potency

<< Ri skQ’;

<< Minimize’;

Multistage (Genotoxicity) Model

■ Multistage Potencies for TCE Cancer Bioassays

The Mathematical program “QFit” (by K.T. Bogen, LLNL-see “RiskQ Functions Used” section below) was used to obtain

for each bioassay data set a distribution reflecting parameter-estimation uncertainty pertaining to the value of multistage-

model “potency” (denoted ql ), that is, the value of the linear coefficient of dose D in the multistage model of cancer risk,

which posits that cancer risk is essentially an exponentiated-polynomial function dose. Conditional on any sufficiently

“upper-bound (i.e., conservative) estimate (denoted ql * > O) of the linear “potency” term (ql ), the multistage model guaran-

tees that any small increase in cancer risk will be very nearly equal to the produce ql * x D. Uncertainty distributions are

derived corresponding to each of seven bioassay data sets considered below; one data set (data set #7 below concerning the

study by Henchler et al., 1980, showing malignant lymphoma in female HAN:NMRI mice) is excluded for reasons noted

below.

■ 1. NCI 1976 Mouse B6C3F1: M 34 g HCC

xhi=800;
doses = { o, 37o, 739}*1. (* mg/kg-d LTWAM *);

ndosed= {20, 48, 40};
nrespond= { 1, 26, 31};
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qTCEl=QFit[doses, ndosed, nrespond, 500,
PolyDegree->2, Exponentiated->True,
Con fInterval->.90, Output ->Ql,
Xmin->-xhi/100,Xmax->1. 01*2dIi,Ymin->O,Ymax->1] ;

The Optimized Function F of Dose d is:

F(d) . 1 - exp[-P(d)], where:

P(d) = 0.0524116+0.00199086d+ 2.72013x10-8d2

ChiSquare(l)= 0.032011 l-tailedp= 0.858003

R2= 0.999488

F(d) vs Data

(& Bootstrap 90% Conf. Limits on Data)

0.8

0.6

0.4

0.2

0 200 400 600 800

■ 2. NC11976Mouse B6C3Fl: F29g HCC

xhi.600;
doses = { O, 275, 550}*1. (* mglkg-d LTWAM *);

ndosed = {18, 42, 37};
nrespond = { O, 4, 11};

G2
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qTCE2=QFit[doses, ndosed, nrespond, 500,
PolyDegree->2, Exponentiated-> True,
Con fInte=al->.90, Output->Ql,
Xmin->-xhi/100,lhuax->1. Ol*xhi,Ymin->O,Ymax->1] ;

The Optimized Function F of Dose d is:

F(d) = 1 - exp[-P(d)], where:

P(d) = 0.0000863863d+l.00929x 10-Gd2

ChiSquare(l) = O. Perfect fit.

R2= 1.

(&

1

0.8

0.6

0.4

0.2

F(d) vs Data

Bootstrap 90% Conf. Limits on Data)

o 100 200 300 400 500 600

■ 3.IWP1983MouseB6C3Fl: M37g HCCorHCA

xhi=600;
doses = { O, 563}*1. (* mg/kg-d LTWAM *);

ndosed = {48, 50};
nrespond = {11, 38};

G3
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qTCE3=QFit[doses, ndosed, nrespond, 500,
PolyDegree->1, Exponentiated->True,
Con fInterval->.90, Output->Ql,
Xmin->-xhi/100,lWuax->1. Ol*xhi,Ymin->O,Ymax->1] ;

The Optimized Function F of Dose d is:

F(d) = 1 - exp[-P(d)], where:

P(d) = 0.260283+0.00207253d

ChiSquare(0) = O. Perfect fit.

R2= 1.

(&

F(d) vs Data

Bootstrap 90% Conf. Limits on Data)

0.8

0.6

0.4

0.2

r
o 100 200 300 400 500 600

■ 4. NTP1983Mouse B6C3Fl: F33g HCCorHCA:

xhi=600;
doses = { O, 563}”1. (* mg/kg-d LTWAM *);

ndosed = {41, 41};
nrespond = { 4, 19};

G4
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qTCE4=QFit[doses, ndosed, nrespond, 500,
PolyDegree->1, Exponentiated->True,
Con fInterval->.90, Output->Ql,
Xmin->-fii/100,~->1. Ol*xhi,Ymin->O,Ymax->1] ;

The Optimized Function F of Dose d is:

F(d) = 1 - exp[-P(d)], where:

P(d) = 0.102654+0.000923402d

ChiSquare(0) . 0. Perfect fit.

R2= 1.

(&

F(d) vs Data

Bootstrap 90% Conf. Limits on Data)

1

0.8

0.6

0.4

0.2

0 100 200 300 400

■ 5.NT.P1983RatF344/N:M 340g

xhi=300;

doses = { O, 198, 282}*1. (*
ndosed = {33, 20, 16};

nrespond = { O, 0, 3};

500 600

RenalTub Adenocarcinoma

mg/kg-d LTWAM *);

G5
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qTCE5=QFit[doses, ndosed, nrespond, 500,
PolyDegree->2, Exponentiated->True,
Con fInterval->.90, Output->Ql,
Xuin->-fii/100,Xmax->1. Ol**i,Ymin->O,Ymax->.5] ;

The Optimized Function

F(d) = 1 - exp[-P(d)],

P(d) = 2.35123x10-cd2

ChiSquare(2). 1.96373

R2= 0.485332

F(d) VS

F of Dose d is:

where:

l-tailed p. 0.374612

Data

o 50 100 150 200 250 300

■ 6. Bell et al. 1978Mouse B6C3Fl: M35(?)g HCCorHCA

xhi=300;
doses = { O, 42.3, 127, 254}*1. (* mglkg-d LTWAM *);

ndosed = {99, 95, 100, 97};
nrespond = {20, 35, 38, 53};
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qTCE6=QFit[doses, ndosed, nrespond, 500,
PolyDegree->3, Exponentiated->True,
Con fInterval->.90, Output->Ql,
Xmin->-xhi/100,lUnax->1. Ol*xhi,Ymin->O,Ymax->1];

The Optimized Function F of Dose d is:

F(d) = 1 - exp[-P(d)], where:

P(d) = 0.287436+0.00181511d+ 2.65261x10-9d3

ChiSquare(l)= 3.29871 l-tailedp= 0.0693345

R2= 0.881871

F(d) vs Data

(& Bootstrap 90% Conf. Limits on Data)

L I

o 50 100 150 200 250 300

7.Henchleretal. 1980MouseHan:NMRI: F30(?)g Malig.Lymphoma
Henchlerdidnot consider this positive--called the study negative;
High spontaneous Malig. Lymphoma incidence is peculiar to this strain ofrnicein females (inborn
murinelymphoma virus)
p=0.03 by Fisher Exact for females (this data set); p=l for males

xhi=200;
doses = { O, 33.2, 166}*1. (* mg/kg-d LTWAM *);

ndosed = {29, 30, 28};
nrespond = { 9, 17, 18};
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qTCE7=QFit[doses, ndosed, nrespond, 500,
PolyDegree->2, Exponentiated->True,
Con fInterval->.90, Output->Ql,
Xuin->-xhi/lOO,Xmax->l.Ol*khi,Ymin->OrYmax->l] ;

The optimized Function F of Dose d is:

F(d) = 1 - exp[-P(d)], where:

P(d) = 0.54236 +0.00338976d

ChiSquare(l)= 2.3744 l-tailed

R== 0.673392

F(d) vs Data

p= 0.123339

(& Bootstrap 90% Conf. Limits on Data)

‘~

0.8

0.6 ; 4)

It
0.2 :

0 50 100 150 200

■ $. Maltofiet al. 1986 Mouse Swiss: F30(?)g Malig. Hepatoma

xhi=250;
doses = { O, 35.3, 106, 212}’1. (* mg/kg-d LTWAM *);

ndosed = {90, 90, 90, 90};
nrespond = { 4, 2, 8, 13};



G. Potency G9

qTCE8=QFit[doses, ndosed, nrespond, 500,
PolyDegree->3, Exponentiated-> True,
Con fIntemral->.90, Output->Ql,
Xmin->-xhi/100,_->1. Ol*tii,Ymin->O,Ymax->.25] ;

The Optimized Function F of Dose d is:

F(d) = 1 - exp[-P(d)], where:

P(d) = 0.0329504 +0.000306602d +1.36839x10-sd2

ChiSquare(l). 1.62806 l-tailedp= 0.201971

R2= 0.911347

F(d) vs Data

(& Bootstrap 90% Conf. Limits on Data)

o 50 100 150 200 250

qall. {qTCEl, QTCE2, qTCE3, qTCE4, qTCE5, uTCE6,

uTCE7, qTCE8};

■Weighted-Average

■ Defimeqall

cdfs = Cdf/@qall;

TCE Cancer Potency

PlotCdf[cdfs, Xmin ->-.0001, IWax-> .008];

1

0.8

0.6

0.4

0.2

0 0.002 0.004 0.006 0.008

G9
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Remove Henchler lymphoma data, due to his determination that this was a negative study given the likelihood of murine

Iymphoma virus involvement

cdf7 . Drop [calfs, {7}] ; CdfQ /@calf 7

{True, True, True, True, True, True, True }

PlotCdf [cdf7, Xmin ->-.0001, Xmax -> .008] ;

1

0.8

0.6

0.4

0.2

0 0.002 0.004 0.006 0.008

Replot to look nicer:

PlotCdf [cdf7, Xmin ->-10’-6, Xmax -> .oo401] ,:

1

0.8

0.6

0.4

0.2

0 0.001 0.002 0.003 0.004

0 = {EV[#], Edf[#, 0], ’Idf[#, {.5, .95}] }&/@cdf7;

00 . Prepend [Transpose [Prepend [Transpose [Flatten/@o] ,

Range [7]]], {“Studyn, Mean, PO, “50th%ile”, “95th% ile”}];

TEL [00]

Study
1

Mean Po 50th%ile 95th%ile
0.00151724 0.018 0.00162322 0.00224792
0.000100304 0.624 0 0.000474276
0.0021167 0 0.00207564 0.00294787
0.000933588 0 0.000915365 0.00142873
0.0000371087 0.854 0
0.00148119

0.000283281
0.028 0.00152863 0.00246978

0.000282383 0.342 0.000246207 0.000755992

Study-Weighting Logic:

{Species, Strain, Sex, Site, Study }-specific data are equally likely, therefore:

Data sets {{{{l,3,6},{2,4 }}, 8}, 5}={mouse,rat}={mouse{b6c3fl {m,f},swiss},rat}

getrelative weights: {1,1} = { { {{1,1,1}, {1.5,1.5}}, 6}, 12}
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(Note that Henchler lymphoma data was removed, due to his determination that this was a negative study given the

likelihood of munne lymphoma virus involvement.)

WW= {{{{l, 1, 1}, {3/2, 3/2}}, 6}, 12} /24;

studies = {{{{lz3r 6}, {2,4}1, 8}, 5};

*= {{{{34, 37. 35}. {29, 33}}, 30}, 340};
wt =Transpose [Flatten /@{studies, WW, bwg}];

Swt = Sort [wt] ;

weights = #[[2] ]&/@swt;

bwg = Last /@swt;

{WW, wtr swt, weights, bwg]

{{{{{4’ + + {*’ +7}}’ a +}’ {{1’+’ 34}’{3’4’ 37}’
{6, ~, 35} {2 +, 29}, {4, ~, 33}, {8, $ 30}, {5, :, 340}}, {{1/ ~, 34},

{2, *J 29}f {3~z~ 37}, {4, *, 33}, {5, +, 340}, {6, +, 35}, {8, :, 30}},

{*’ *’ 4’ m’ ~’ 4’ +}’ {34’ 29’37’33’340’35’ sol}

Average the study-specific cdfs using the study-specific weights (“weights”) defined above, plot the results, and get statistics

for the resulting averaged cdf (“adfBW) based on a body-weight (i.e., using a mass-per-kg-body-weight) approach to

interspecies scaling of equitoxic doses.

adfBW. AverageCdf [calf7, Weights -> weights] ;

ad fBW>> ‘BogenHD:Ken: Projects:TCE Air Force: QbwCdfw;

PlotCdf[adfBW, Xmin-> -10’ -6, Xmax-> .003, Ymin-> .499];

0.5 ~
O 0.00050.0010.001 !31.0021.00250.003

01= {Length [adfBW], EV[adfBW], Edf[adfBW, O],

Idf[adfBW, .95]};

TBL[{{Length, Mean, PO, “95th%ile”}, 01}]

Length Mean 95th%ile
1421. 0.000366899 ;!553417 0.00187624

Multiply the abscissa of each cdf by (WM13W)A.25, where Wh = 70 kg and BW is rodent body weight in grams, i.e., scale

using aBW75 scaling factor. fienre-average tiecdfs using tiesame study-specific weights asusedabove, to obtain the

resulting averaged cdf(’’adf75’’) based ona(body weight)75 (i.e., using amass-per-(kg body weight) ’75)approach to

interspecies scaling of equitoxic doses.

Gll
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bwr75 = (70* 1000 /bwg) ‘ .25

{6.73604, 7.00931, 6.59514, 6.7865, 3.78795, 6.6874, 6.95015)

cdf75 =

Transpose/@({#[[l, 1]] *#[[2]], #[[l, 2]]}&/@Transpose[{Transpose/@cdf7, bwr75}]);

Dimensions/@#&/@{cdf7, cdf75}

{{{298, 2}, {62,2}, {143,2}, {109, 2}, {22,2}, {488,2}, {309, 2}},
{{298, 2}, {62,2}, {143, 2}, {109,2}, {22,2], {488,2}, {309, 2]}}

adf75 =AverageCdf[cdf75, Weights ->weights];

PlotCdf[{adf75, adfBW}, Xmin->- 10’-6, Xmax-> .02, Ymin-> .499];

1

0.9 ‘

0.8

0.7

0.6

0.5
0 0.005 0.01 0.015 0.02

02= {Length[adf75], EV[adf75], Edf[adf75, O],

Idf[adf75, .95]};

TBL[{{Length, Mean, PO, “95th~.ilem}, 02}]

Length Mean 95th%ile
1421 0.00242109 :!553417 0.0125937

Average the cdfs ’’adfBWand ’’adf75° assuming equal likelihood, standardize, simplify, plot, get statistics, andsave:

ade . AverageCdf[{adfBW, adf75}, Weights -> {.5, .5}] ;

ade . StandardizeCdf[ade, 500];

adf=SimplifyCdf [ade];

Dimensions/@{ade, adf)

{{501, 2}, {226,2}}

G12
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PlotCdf [{adf75, adfBW, adf}, Xmin-> - .00002, Xuax-> .02, Ymin-> .49];

1,

0.9;

0.8;

0.7 :

0.5 7
0 0.005 0.01 0.015 0.02

012= {Length[adf], EV[adf], Edf[adf, O], Idf[adf, .95]};

TBL[{{Length, Mean, PO, “95th%ilem}, 012)]

Length Mean 95th%ile
228 0.00140008 ~!552 0.00902774

■ Defineadf

WriteMatrix[mBogenIiD:Ken:Projects:TCE Air Force:Qcdf.txt”, N[adf]];

TCE Threshold (Cytotoxicity) Model

■TBARS dose-response inrnale B6C3Fl mice

27-g male B6C3F1 mice (Larson& Bull, 1992)

Dose in mg TCA per kg BW, vs. TBARS in nmol malondialdehyde equiv./g liver (n=4 ~ ea. dose)

df = 3;

TBARScontrol = 40;

SDcontrol =4;

dose =Log[10., {100, 300, 1000, 2000}];

tbars. {46, 67, 81, 108} -TBARScontrol;

sd = {6, 7, 6, 7}2+42;

dat=Transpose[{dose, #}] &/@{tbars+sd, tbars-sd, tbars};

{t95. RQ[Q,T, 3, .95], TBARS95. t95*SDcontrol, TBARShi =Last[tbarsl}

{2.35336, 9.41345, 68}

fxn[dose_, p_] := p[[l]]*NormalCdf[ (dose -P[[211)/P[[3111

List “o” = {parameter estimates, corresponding SE values, {X2, df, p-value} }:



G. Potency G14

o. LSMin[dose, tbars, {140, 4, 1}, fxn,

Weights + sd’ -2, KnownVariances + True, Progress + True, Step 410-4, Output + CVM]

O {{140., 4., l.}, 29.8243)

1 {{140., 3.996, 1.00361}, 29.2399}

2 {{140., 3.95962, 1.03601}, 24.2432}

3 {{140.001, 3.77426, 1.17963}, 7.75091}

4 {{140.004, 3.49797, 1.11006}, 2.23287}

5 {{140.007, 3.3745, 0.864436}, 1.33394}

6 {{140.023, 3.38641, 0.882103}, 1.3235}

7 {{140.175, 3.38757, 0.882599}, 1.32304}

{{140.023,3.38641, 0.882103}, {{89321.2, 661.561,283.881),

{661.561, 4.91457, 2.1214}, {283.881, 2.1214, 0.945736]], {1.32304, 1, 0.250047}}

vars. Diagonal [Sqrt[o[[2] ]]];

vars = Table[vars[ [i]] vars[[j ]], {i, 3}, {j, 3}];

0[[2]] /vars

{{1., 0.998504, 0.976729}, {0.998504, 1., 0.983998}, {0.976729, 0.983998, l.}}

Clear[fxn];

sdraw = G sd;

fxn[dose_, p_] := 100*NormalCdf[ (doSe-p[ [1]])/P[[2]]]

0= LSMin[dose, tbars, {3, 1}, fxn, NYatX+ {4, 4, 4, 4},

SDY*sdraw, Weights+ sdrawA-2,

~ownVariances +True, Progress+True, Step+ 10-5, Output +CVM]

O {{3., l.}, 16.1584}

1 {{3.0001, 0.999935}, 16.1557}

2 {{3.00104, 0.999284}, 16.1294]

3 {{3.00964, 0.993005}, 15.8937}

4 {{3.05248, 0.944763], 14.7945}

5 {{3.06417, 0.786705}, 13.6469}

6 {{3.05095, 0.731969}, 13.5613}

7 {{3.05227, 0.734029}, 13.5611}

{{3.05095, 0.731969},

{{0.0084548, 0.00477488}, {0.00477488, 0.0311052]}, {13.5611, 14, 0.482896}}

Calculate the Pearson product-moment correlation of the two fitted lognormal-model parameters:

G14
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vars = Diagonal [Sqrt [0[[2]]]];

vars=Table [vars [[i]] vars [[j]], {i, 2}, {j, 2}];

0 [[2]] /vars

{{l., 0.294438}, {0.294438, 1.}]

{0.00845479840778034485’, 0.0311052466621742773’ }’.5

{0.09195, 0.176367}

0= LSMin[dose, tbars, {3, 1}, fxn, NYatX+ {4, 4, 4, 4},

SDY+ sdraw, Weights+ sdraw’-2,

KnownVariances *True, Progress *True, Step+ 10-5]

O {{3., l.}, 16.1584)

1 {{3.0001, 0.999935}, 16.1557}

2 {{3.00104, 0.999284}, 16.1294)

3 {{3.00964,0.993005}, 15.8937]

4 {{3.05248, 0.944763}, 14.7945}

5 {{3.06417, 0.786705}, 13.6469]

6 {{3.05095, 0.731969}, 13.5613]

7 {{3.05227, 0.734029}, 13.5611}

{{3.05095, 0.731969}, {0.09195, 0.176367}, {13.5611, 14, 0.482896}}

0= {{3.05095121221202791’ , 0.731969108012972302’}, {0.0919499777475793855’,

0.176366795804012603’} , {13.5610834321759421’, 14, 0.482895537121049489’1 };

PlotData[dat, FitTo+ {{fxn[d, 0[[1]]], TBARS95+10-6 *d}, d},

Xmin + -.01, Xmax+3.5, Ymin +-.01,

Style+ {M, J, M, 00}, DotSize+ .015,

Dashed+ {False, .025}];

o
0 0.5 1 1.5 2 2.5 3 3.5

end
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■ Effective acute TCA threshold dose (mg/kg) for TBARS elevation

■ JlefimecdfD95 = Prob{signifkant TBARS elevation} IEffective TCA dose (m@ plasma)
(with abscissa units of mg TCiWL plasma based on Larson & Bull (TAP 115:268-277, 1992) using:
Vd = 15.0 mL
Cmax = 790 nmol TCA/rnL plasma = 129.1 mg TCA/mL plasma
100 mg TCA in water administered by gavage)

To do this, fiist analytically solve for values of d95 I fxn[{pl,p2},d95] = TBARS95, where d95 is dose on a loglO(mg/kg)

scale, and fxn is the log-normal response function fitted above:

100*NommlCdfl(dose-p 1)/p2],

where pl and p2 and their estimated standard deviations are repeated below, and where errors in p 1 and p2 are assumed to

have a joint T distribution with df = 14 a correlation r equal to -0.294.

{{PI, P2} =o[[lllr {Sdpl, sdP2} =0[ [2]]}

{{3.05095, 0.731969}, {0.09195, 0.176367})

{pval = TBARS95/ 100, zval ❑ NormalCd~TBARS95/ 100, Inv]}

{0.0941345, -1.31572]

d95 = Simpliffi (P1 + sdpl*t14a) + (P2 + sdp2*t14b) * zval]

2.08789 + 0.09195 t14a - 0.232049 t14b

{constant. pl +p2 * zval, WI = sdpl, W2 . sdp2* zval}

{2.08789, 0.09195, -0.232049}

Therefore, d95 is distributed as a constant plus a weighted sum (v)of two correlated T-ditributed variates having weights w 1

and W2 and degrees of freedom f 1=14 and f2=14, respectively. A numerical-analytic solution for the cumulative distribution

function ~(v) of the weighted sum (v) of two correlated T-variates is ‘as follows, based on a straightforward extension of

previously published results concerning independent weighted T-variates, to the case of correlated T-variates (Ruben, H.

1960. On the distribution of the weighted sum of two independent Student variables. J. Royal Sot. Stat. Ser. B (Methodol.)

22, 188-194.):

#[v_, fl_I f2_J wl_, w2_, p_: o] :. Module[ {x, dBz dIx, 4x, f12 = fl + f2},

dBx= dXBeta[x, fl/2, f2/2] /Beta[fl/2, f2/2] ;

ox= Abs[sqrt[

(f12*x (l-x)) /(fl (l-x) W12 +f2*x*w22 +2p*wl*w2ifl*f2*x (l-x) )]];

If [Number~v] ,

NIntegrat$CDFIStudentTDi stributio~12] , v* 4x] *dBx,

{x, O, 1}, WorkingPrecisiors 20, AccuracyGoal+ 12, MaxRecursion+ 10],

NIntegrat~CDFIStudentTDi stributio~12] , # *4x] *dBx, {x, O, 1},

WorkingPrecisio= 20, AccuracyGoal+ 12, MaxRecursion+ 10] & /@v

]]/;NumberSlv] 11Vector~v, Nuxnber~

{constat, wl, w2}={2. 0878871554404643~ O9l94997774757939,
-0.23204875723225765};

G16
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■

(*test*)

#[-1.5, 14, 14, w1, w2, 0.294]

4.869885 x10-6

logdc=Join[-{5.5, 5, 4.5, 4, 3.5}, Range[-3, O, .01]];

RR = ~[#, 14, 14, wI, w2, 0.294] & /@logdc;

pps = Join[pp, 1- Rest[Revers~pp] ]];

logd = Join[logdc+ constane constant- Rest [Revers~ logdc] ]];

cc. Transpos~ {logs pps} ];

cc. Appen~cc, {8, 1}];

cdfD95= Prepen~{ (10A#[ [l]]) * (130./100), #[[2]]} &/@cc, {O, O}];

PlotCd~cdfD95, ~in+ -0.00~ Xmax+ 600, Ymin+ -0.0000~ YIUSX* 1];

“o 100 200 300 400 500 600

cdfD95 >> “BogeniillKen:TCISAir Fore= Data:TBARSvTC!Zf;

Obtain a low-risk analytic approximation of cdfl195 that will be used to alc~ate znd order

approximations of cyt&oxic ‘%k (RcAng, RcBar), because cdfD95 is very nonlinear at low
risks

F~st look at cdfD95 in log-log space:

dat=Log[10., {#[[l] ], #[ [2]]}] &/@ Rest[cdfD951 ;

{First[dat] , Last[dat] }

{{-3.29817, -12.5}, {8.11394, 0.]}

fdat= Take[dat, {4, 260}] ;

{First[fdat] , Last[fdat] }

{{-1.79817, -10.5282}, {1.74183, -1.52916}}

Lengt~fdat]

257

wts=Join[{10A3, 10’3}, Table[l, {255}]];

G17
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fit. Fit[fdat, {1, x, XA2], x]

-7 .23848+2.46626x+0.469885x2

PlotDat~dat, Ihnin+ -2.01, Xmax+ 3, JoinPoints+ True,

Ymin* -10.0~ Ymax* -.0000U Style+ {00}, DotSize+

–2

–4

-6

-8

-2 -1 0 1 2 3

.001, FitTo+ {fit, x}, Dashed+

end

end

G18
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Appendix 3.H

TCE Risk

<< RiskQ’;

HardDrive = “BogenHD”;

PathName [filename_, hardDrive_String: HardDrive] := Module [{file = filename},

If[Head[file] =!= String, file .ToString[file]] ;

StringJoin [hardDrive, ll:Ken:TCE Air Force:Data: II,file]

1;

■ Log-Transform Utility Functions

GMGSDX: :usage .

“GMGSDx’[Mx,SDx] returns the geometric mean and geometric sdandard deviation of

a lognormal variate X that also has the specified arithmetic mean lfx and

arithmetic sdandard deviation SDX, based on the method of moments. “;

MSDx::usage .

“MSDx[GMx,GSDx] returns the arithmetic mean and arithmetic sdandard deviation

of a lognormal variate X that also has the specified geometric mean GMx and

geometric sdandard deviation GSDX, based on the method of moments.”;

GMGSDX1: :usage .

“GMGSDxl[cvWant,cv2] returns the GM and GSD of a lognormal variate Xl, such that

the product X1.X2 has the desired coefficient of variation (CV) = cvWant,

conditional on the lognormal variate X2 having an arithmetic mean and

CV equal to 1 and CV2, respectively, based on the method of moments.”;

MSDx[GMx_, GSLh_] :. Module[{mux, sigy}r

sigy = Log[GSDx];

mux=GMxEA((sigyA2) /2);

mux{l, Sqrt[EA (sigyA2) -l]}]

GMGSD%[Mx_, SDx_] := Module[{muy, sigy},

sigy=Sqrt[Log[l+ (SDx/Mx) ‘2]];

mUY=LOg[~] -(si9y”2) /2;

E’{muy, sigy}]

GMGSDxl[cvWant_, cv2_] := Module[{myl},

muyl=Log[Sqrt [
.::tH#

EA{mUYl, S~rt[-2muYl]]

] /; Cvwant>=CV2



H. Risk H2

■ Extrapolation Factors (cf. Slob & Pieters, I?kk And, 1998; EPA)

Assumed that median is central target for uncertain EF, expected value is central target for heterogeneous EF.

EFinterspTdyn: Uncertain (Median =1)

{{295, 299} =RQ[Q, N, {O, 1}, {.95, .99}], sdy=Log[3 /1] /299, gsd=EAsdy}

{{1.64485, 2.32635}, 0.472248, 1.60359}

{roux, sdzc} . MSDx[l, gsd] ; {muzc,varx = sd22A2]

{1.11796, 0.312264}

EFintraspTdyn: Heterogeneous (Mean = 1)

{Log[10 /1] /299, E’ (Log[10 /1] / 299)}

{0.989785, 2.69066, 4.1787]

rule . Solve [(roux/gmx) =. EA(sigp* sigp/2), gmx] [[l]]

{gmx . E-= xnux}

Solve [sigp .= (Log[xp / gmx] /. rule) / ZP, sigp]

{{s’””’”--} {s’””’’+=}}
10’ (2/3.)

4.64159

{sdy= 299- ~z992 -2 Log[5] , muy=-sdy*sdy/2, ~= EAlm2Y, gsdx= E ‘sdy}

{0.845464, -0.357404, 0.69949, 2.32906]

{gmzc*E~ (sdy*z99), 5/9m22}

{5., 7.14807}

{roux,sdx} = MSDx[gmx, gsdx] ; {roux,varx ❑ sdzc~2}

{l., 1.0438}

(I3F = I+U): acute -> subchronic -> chronic EF, where Efi=l and U is Uncertain (Median = 2x3 = 6)

{{sdyA= Log[6 /3] /Z~~, gsd= E.sdyA],

{sdyB = Log[10 /2] /299, EAsdyB}, {sdy= l/sdyA2 +sdyB2 , EAsdy})

{{0.297955, 1.3471}, {0.69183, 1.99737}, {0.753264, 2.12392}}
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EFinterspTdyn. {LN, Log[{l, 1.60359450162908601’}]};

EFintraspTdym. {LN, Log[{O.700, 2.33}]};

EFacuteTosubchr = {LN, Log[{3, 1.34710131239470021’}]];

EFsubchrTochr ={LN, Log[{2, 1.99736804456840957’}]};

EFacuteTochrl ❑ {LN, Log[{5, 2.12392092140740462’}]};

{roux,sdx}=MSDx[5, 2.123921]; {mux,varx.sdxA2}

{6.64019, 33.6726}

frisk[cdf_] := RQ[Cdf, cdf[[l]], cdf[[2]], 2000];

{cdfEFinter, cdfEFintra, cdfEFchronl}=

Erisk/@{EFinterspTdyn, EFintraspTdym, EFacuteTochrl};

{EFinterspTdynAng, EFintrasRTdynBar, EFacuteTochrlAng} =

(EV[#,Empirical->True]&/@{cdfEFinter, cdfEFintra, cdfEFchronl})

{1.11699, 0.997245, 6.62175}

EFintraspTdynBar. 1;

Composite toxicodynamic uncertainty factor U=(UinterTdyn*( l+Uacute2chrl)), has mean andvariance:

ml = 1.11796373;

mu2 = 6.640194;

{muU=mul (l+mu2), muU~2}

{8.54146, 72.9565]

V1 = 0.3122643770245;

V2 = 33.672622183427;

varU= (vl*v2) +(mul*v2)+(mu2.vl)

50.233

-see Ang and Tang, Probability Concepts in Stetistice Vol. I, John Wiley&Sons, NY, p. 196.

end

Effective Dose

■ Genotoxic effective dose(EgBar, EgAng)

Exposures areallin unitsof(mg/kg-d) x1000 (see ’’D. Effective Genotoxic Dose”):

Clear[cdfEingestBar, cdfEingestAmg, cdfEdermalBar,

cdfEdermalAng, cdfEinhaleBar, cdfEinhaleAng, EingestBar,

EingestAng, EdermalBar, EdermelAng, EinhaleBar, EinhaleAng, o,

EingestBarAngr EinhaleBarAng, EdermalBarAng, EingestAngBar,

EinhaleAngBar, EdermalAngBar];

H3
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o = Get /@ (PathName [#l] &) /@

{EingestBar, EingestAng, EdermalBar, EdermalAng, EinhaleBar, EinhaleAng};

{cdfEingestBar, cdfEingestAng, cdfEdermalBar,

cdfEdermalAng, cdfEinhaleBar, cdfEinhaleAng] .o;

{EingestBarAmg, EingestAngBar, EdermalBarAng, EdermalAmgBar,

EinhaleBarAng, EinhaleAngBar} . (EV[#, Empirical+True]&/@o);

o. {{EingestBarAng, EinhaleBarAng, EdermalBarAng},

{EingestAngBar, EinhaleAngBar, EdermalAngBar}}

{{0.0507837, 0.00235084, 0.0071258}, {0.0491639, 0.00225019, 0.00684773}}

Plus@@#&/@o

{0.0602603, 0.0582618)

cdfBar= {({EingestBarAng-i, 1}#) &/@cdfEingestBar,

({EdermalBarAng-i, 1}#) &/@cdfEdermalBar, ({EinhaleBarAng-l, 1}#) &/@cdfEinhaleBar};

cdfAng= {({EingestAngBar-l, 1}#) &/@cdfEingestAng,

({Edermal&ngBar-’, 1}#) &/@cdfEdermalAng, ({EinhaleAngBar-l, 1}#) &/@cdfEinhaleAng};

PlotCdf[Join[cdfBar, cdfAng], Xmin+- 10-4, Xmax*5r Ymin+ -10-4];

1

0.8

0.6

0.4

0.2

n
-o 1 2 3 4 5

Clear[EgBar, EgAng];

cdfBar = (PlusG@cdfBar) /3;

cdfAmg= (plust?@cdfAng) /3;

Put[cdfBar, PathName[EgBar]];
Put[cdfAng, PathName[EgAng]];

EgBar = cdfBar;

EgAng= cdfAng;

EgBar. Get[ PathName[EgBar] ];

EgZ+mg= Get[PathName[EgAng] ];CdfQ/@{EgBar, EgAng)

{True, True}

H4
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PlotCdf [{EgBar, EgAng}, Xmin + -10-4, Xmax + 5, Ymin + -10-4] ;

1

0.8

0.6

0.4

0.2

0
012345

EV [#, Empirical + True] & /@ {EgBar, EgAng]

{l., 1.]

Var [#, Empirical + True] & /@ {EgBar, Eg~g}

{2.45519, 4.42109}

{Edf[#, 1], Idf[#, {.5, .95, .99}] }&/@ {EgBar, EgAng)

{{0.658518, {0.844739, 1.74748,2.59973}}, {0.769714, {0.223819, 4.81475,10.326}}}

{{EingestAngBar, EinhaleAngBar, EdermalAngBar}/

(Plus@@? {EingestAngBar, EinhaleAngBar, EdermalAngBar}),

{EingestBarAng, EinhaleBarAng, EdermalBarAng}/

(Plus9@ {EingestBarAng ,EinhaleBarAng, EdermalBarAng}) }

{{0.843844, 0.038622, 0.117534}, {0.842738, 0.0390114, 0.11825}}

Redefine {EingestAngBar,EdermalAngBar, EinhaleAngBar} each as ameanof the corresponding AngBarand BarAng

means, then derive relative contributions of {EingestAngBar,EdermalAngBar, EinhaleAngBar} to Etotal, (where Etotal=

EingestAngBar+EdermalAngBar +EinhaleAngBar).

{{EingestAngBar ,EinhaleAngBar ,EdermalAngBar} =

({EingestAngBar, EinhaleAngBar, EdermalAngBar]+

{EingestBarAng, EinhaleBarAng, EdermalBarAng})/2,

Etotal = Plus@@ {EingestAngBar, EinhaleAngBar, EdermelAngBar},

FEingderinh. {EingestAngBer, EinhabAngBar, EdermalAngBar}/Etotal}

{{0.0499738, 0.00230051, 0.00698677}, 0.0592611, {0.843282, 0.03882, 0.117898}]

Etotal =0.0593/1000; (* mg/kg-d ?)

{EingestAngBar, EinhaleAngBar, EdermalAngBar} = {0.843, 0.039, .l18}*Etotal

{0.0000499899, 2.3127x10-’, 6.9974x10-’]

{EingestBarAng, EdermalBarAng, EinhaleBarAng} .

{EingestAngBar, EdermalAngBar, EinhaleAngBar};

end
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■ Cytotoxic exposures (EcBar, EcAng)

Clear [ECingestAng, ECingestBar, ECinhaleAng, ECinhaleBar, ECdermalAng, ECdermalBar];

ECingestAng . Get [PathName [ECingestlWg] ];

ECingestBar =Get[PathName [ECingestBar] ];

ECinhaleAng =Get[PathName [ECinhaleAng] ];

ECinhaleBar = Get[PathName [ECinhaleBar] ];

ECdermalAng =Get[PathNsme [ECdennalAng] ];

ECdermalBar =Get[PathName [ECdermalBar] ];

CdfQ/@{ECingestAng, ECingestBar, ECinhaleAng, ECinhaleBar, ECdermalAng, ECdermalBar]

{True, True, True, True, True, True]

{ECingestAngBar, ECingestBarAng, ECinbaleAngBar, ECinhaleBarAng,

ECdexnudAngBar, ECdermalBarAng} .EV[#, Empirical ->True] &/@

{ECingestAng, ECingestBar, ECinhaleAng, ECinhaleBar, ECdermalAng, ECdermalBar}

{0.0161848, 0.0162664, 0.00835208, 0.00840379, 0.00226194, 0.0022786}

cdfCBar= {({ECingestBarAng-l, 1}#) &/@ECingestBar,

({ECdermelBarAng-i, 1}#) &/@ECdermalBar, ({ECinhaleBarAng-l, 1}#) &/@ECinhaleBar};

cdfCAng. {({ECingestAngBar-i, 1}#) &/@ECingestAng,

({ECdermalAngBar-l, 1}#) &/@ECdennalAng, ({ECinhaleAngBar-’, 1}#) &/@ECinhaleAng};

CdfQ/@#&/@{cdfCBar, cdfCAng}

{{True, True, True], {True, True, True}]

PlotCdf[Join[cdfCBar, cdfCAng], Xmin+ -10-4, 13uax+5, Ymin+ -10-4];

Dimensions/@ cdfCAng

{{405,2}, {405,2}, {405,2}}

Clear[EcBar, EcAng];

cdfCBar= (Plus@@cdfCBar) /3;

cdfCAng= (Plus@@cdfCAng)/3;

Put[cdfCBar, PathName[EcBar]];

Put[cdfCAng, PatbName[EcAng]];

EcBar . cdfCBar;

EcAng = cdfCAng;

H6
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EcBar . Get [PatbName [EcBar] ];

EcAng=Get [PathName[EcAng]]; CdfQ/@{EcBarr EcAng]

{True, True}

PlotCdf[{EcBar, EcAng}, Xmin+-lO-’, XmSX +5, Ymin +-lo-’];

1

0.8

0.6

0.4

0.2

o
012345

EV [#, Empirical + True] & /@ {EcBar, EcAng}

{l., 1.}

Var [#r Empirical + True] & /@ {EcBar, EcAng]

{2.57639, 1.01933}

{Edf[#, 1], Idf[#, {.5, .95, .99}] }&/@ {EcBar, EcAng}

{{0.748303, {0.900642, 1.31192,2.1726}}, {0.667287, {0.682963,2.94235, 5.41263}}}

{{ECingestAngBar, ECinhaleAngBar, ECdermalAngBar} /

(Plus@@ {ECingestAngBar, ECinhaleAngBar, ECdermalAngBar}),

{ECingestBarAng, ECinhaleBarAng, ECdermalBarAng}/

(Plus@@ {ECingestBarAmg, ECinhaleBarAng, ECdermalBarAng}) }

{{0.603938, 0.311658, 0.0844043}, {0.603605, 0.311842, 0.0845528}}

Define {CingestAngBar,CdermrdAngB ar, CinhaleAngBar }eachasameanof thecorresponding AngBarandBarAng means,

thenderive relative contributionsof {CingestAngBar,CderrnalAngBar,CinhaleAngBar} toECtotal, (where Ctotal= Cingest-

AngBar+CdermalAngB ar+CinhaleAngBar).

{{CingestAngBar, CinhaleAngBar, CdermalAngBar} =

({ECingestAmgBar, ECinhaleAngBar, ECdermalAngBar}+

{ECingestBarAng, ECinhaleBarAng, ECdermalBarAng})/2,

Ctotal = Plus@@ {CingestAngBarr CinhaleAngBar, CdermalAngBar},

FCingderinh .{CingestAngBar, CinhaleAmgBar, CdermalAngBar] /Ctotal}

{{0.0162256, 0.00837794, 0.00227027}, 0.0268739, {0.603771, 0.31175, 0.0844788}}

Ctotal =0.0269; (* mg TCA/L plasma *)

{CingestAngBar, CinhaleAngBar, CdermalAngBar} = {0.604, 0.312, .084} *Ctotal

{0.0162476, 0.0083928, 0.0022596}
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{CingestBarAng, CdermalBarAng, CinhaleBarAng} ❑

{CingestAngBar, CdermalAngBar, CinhaleAngBar};

end

Dose-Response

■ Genotoxic Rjtency(Qcdf)

Qcdf. Get[PathName [QbwCdf]];

QcdfAng. EV[Qcdf, Empirical ->True]

0.000366899

end

■ Cytotoxic Potency (TBARSVTCA)

TBARSVTCA= Get[PathName [TBARSWN2A] ];

TBARSvTCAAng=EV[TBARSvTCA, Bmpirical+True]

186.389

{Idf[TBARSvTCA, {.5, .95, .99}], Edf[TBARSvWA, 130]}

{{159.159,395.291, 614.173}, 0.351186]

PlotCdf[TBARSvTCA, Xmin+ -.0001, %max+ 500, Ymin+ -.001];

1

0.8 ~

0.6

0.4 ~

0.2 ~

o
0 100 200 300 400 500

Last [TBARSVTCA]

{1.3 X1 O’, 1]

P~ARS[DG ] = Fe (Db ) for effective acute cytotoxic dose Da, i.e., the risk of signitlcant TBARS elevation conditional
on Dca.
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PTBARS = Interpolation [Append [TBARSvTCA, {109, l}], InterpolationOrder+ 1];

{PTBARS[130] , PTBARSIO.0269] }

{0.351186, 7.47274 x10-”}

end

end

TCE Risk ( cR>, Rbar)

■ 2nd-order approximation terms for RBar and RAng

Let $.f, Log[lo, xyz] +L, Log[IO, kxyz] +Lk,

2C
and

Log[IO]
+ 2, where Log means in (base e logarithm) , and note that :

Log[x] /Log[lo, x]

Log[IO]

These terms are defined (see Bogen and Spear, 1987) as half the sum of second derivatives with respect to uncertain variates

(for RAng), or to heterogeneous variates(for RBar), in the approximate risk function, which is linear-quadratic in Log[lO,-

Dca], where Dca is acute effective cyJotoxic dose. Note that, conditional on any variate x being evaluated at its expected

value, the ratio (02 ) ~/# is equal to (y2 )x where yX is the coefficient of variation of x (i.e., 7X = UX/pX ). By using the latter

relationship, simplified expressions derived below can be simplified further by incorporating comesponding coefficients of

variation.

d2= (D[f*(k*x* y) A(b+c*Log[lO, k*x*y]), ,{#, 2}]* (&)~) &/@{xJ Y};

d2s = Simplify [Plus @@ d2]

1
(f (kxy)b+c~fi~~’

X2 y2 Log[IO]z

(Log[lO] (2c+ (-l+b) bLog[lO]) +2 (-1+2~) cLog[lO] Log[kxy] +4c2Log[kxy]2)

(y’ (O-2)x+x’ (G’)y))

in which k = DcaAngBar*Utdyn( l+Uchron)BcB~, x = V1 = Vtdyn, y = V2 = BcAng, and the result is evaluated conditional

on V1 = VIBar = VtdynBar = 1 and on V2 = V2Bar = BAngBar = 1. (Note that variates Ez are used to denote corresponding

normalized dose variates Bz used elsewhere in this notebook, for all subscripts z.) In simplified form (along with a test that

this form is correct):

lo’

[

(&) (d),
d2Simplified . ~ (kxy)b+c’

1

(A+ b(b-l)+ 2cL(2(b+c L) -1)) ~+— ;
Y’
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{X1,X2} = N[{d2s, d2Simplified}] //. {a+ -2., b+.05, c+.15, x+.2, y +.1,

2C 10”
(C#)x+l.l, (#)y+l.8, L+ Log[IO, kxy], ~+

2}
,k+.069, f+ —

Log[lo]

{20.0338, 20.0338}

d4= (D[f*(k *u(x+y+ z)) A(b+c*Log[lO, k*u(x+y+ z)]), {#, 2}]* (&)~) &/@{u, X, Y, Z};

d4s . Simplify [Plus @@ d4]

(f (ku (x+y+ z) )b+cLOg~~Iw)’ (Log[lO] (2c+ (-l+ b) bLog[lO]) +

2 (-l+ 2b)c Log[lO] Log[ku(x+y+ z)] +4c2Log[ku (x+y+z)]2)

(( X+ Y+Z)2 (C#)U+U2 ((d) X+(d) Y+(d) z))) /(U2 (x+y+z)2Log[10]2)

inwhich k = DcaAngBar*Vtdyn*BcAng, u = U1 = Utdyn( 1+Uchron), x = U2 = fCing*BcBar, y = U3 = fCinh*BcBar, z =

U4 = fCder*BcBar, and the result is evaluated conditional on U1 = UIBar = [Utdyn(l+Uchron)]Ang and on Ui = UiAng =

fCi*BcBarAng = fCi for i = {ing, inh, der}. (Note that variates Ez are used to denote corresponding normalized dose variates

Bz used elsewhere in this notebook, for all subscripts z.) In simplified form (along with a test that this form is correct):

d4Sirqplified =

lo’
— (k*u(x+y+z))b+c L

[

(d) (C#)x+(d), +(d)z

2
(A+ b(b-l)+ 2cL(2(b+c L) -1)) ~+

)

.
(X+y+ z)’ ‘

{xl, x2] = N[{d4s, d4Simplified}] //.

{a-+2 ., b+.5, c-+ .l, x+.2, Y+ .3, z+.4, u+ .04, (d) V+ 0.05, (d) X+l.l,

2C 10’
(&) Y+l.4, (d)z+l.7, L-+ Log[10rk*u(x+y+ z)], ~+

2}
,k+ .069, f+ —

Log[lo]

{46.8912, 46.8912}

Estimates of variance (e.g., in Bc) are used to evaluate the above expressions; e.g., recall that

Var [#, Empirical + True] & /@ {EcBar, EcAng]

{2.57639, 1.01933}

end

H1O
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■ Rang (Variability Distribution)

{EFintraspTdyn, EgAng x 3, EcAng x 3 } = 7 heterogeneous variates

Ug = Likelihood that Rg is true - UIO, 0.5] by assumption; therefore, UgAng = 1/4.

{a,b,c,} = estimates of linear-quadratic parameters in Log[lO, Dca] that model Fc(Dca) (see “Potency.nb”)

Dose rank correlations(from “F. Effective Dose Correlations”) for: (n= 50x 500)

GingAng CingAng GinhAng CinhAng GderAng CderAng

1. 0.233 0.878 -0.00269 0.894
0.233 1.

0.000496
-0.0088 0.421 0.00439 0.514

0.878 -0.0088 1. 0.187 0.918 0.035
-0.00269 0.421 0.187 1.
0.894

0.0766 0.649
0.00439 0.918 0.0766 1. 0.177

0.000496 0.514 0.035 0.649 0.177 1.

Assign corresponding values to the upper triangular portion of the simulation-input-variate rank-correlation matrix (which

shall be denoted “cord’). Note that the first row of the matrix pertains to the EFintraspTdyn variate (i.e., the intraspecies

toxicodynamic extrapolation factor), which is not correlated with any of the 6 exposure variates.

corr= {{O, O, 0, 0, 0, O}, {.23, .88, 0, .89, O},

{O, .42, 0, .51}, {0.19, .92, 0.035], {.077, .65}, {.18]};

Verify that the Cholesky decomposition of the target rank-corrlation matrix (=Reflect[corr]) contains no imaginary parts:

Cholesky[Reflect [corr] ]

{{1, O, 0, 0, 0, 0, O}, {O, 1, 0, 0, 0, 0, O}, {O, 0.23, 0.973191, 0, 0, 0, 0},

{O, 0.88, -0.207976, 0.42702, 0, 0, O}, {O, O, 0.43157, 0.655136, 0.620116, 0, O},

{0, 0.89, -0.210339, 0.217916, 0.0403333, 0.338442, O},

{O, O, 0.524049,

UX . 8.54146;

(

50.233
sumsig =

UX2

1.89742

0.337196, 0.32724, 0.601429, 0.37798}}

+ (0.6042+0.3122+0.0842)*2.5764
)

HI 1
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{nsam, nsim] = {2000, 10};

UgAng= 1/4; (* see Rbar section below *)

cdfs. {EFintraspTdyn, EgAng, EcAng, EgAng, EcAng, EgAng, EcAng];

Clear [fxn] ;

fxn[x_, Ging_, Cing_, Ginh_, Cinh_, Gder_, Cder_, ratio_: False] := Module [

{Rg, Rcl, Rc2, Rc, Rtot, k= O.0269, Call, A, V, L,

a= -7.23848, b =2.46626, C =0.469885, UX. 8.54146, sumaig=l.89742},

Rg = l- EA-(QcdfAng*EFinterspTdynAng*x *0.0000593*

(0.843Ging+ 0.039 Ginh+O.l18Gder)) ;

Ux = 8.54146;

Call. 0.604 Cing+0.312Cinh +0.084Cder;

V=x*Ux*k*Call;

Rcl =PTBARS[V];

a.2c/Log[lo];

L= Log[lO, V];

10”
Rc2 =Yl@+”*’ (d+b(b-l)+2cL (2 (b+cL)-l))sumsig;

Rc =Rc1+Rc2;

Rtot=l- (1-UgAng*Rg) (1-Rc);

If[ratio, UgAng*Rg/Rtot, Rtot]

1;
fxnFG[x_, Ging_, Cing_, Ginh_, Cinh_, Gder_, Cder_] :.

fxn[x, Ging, Cing, Ginh, Cinh, Gder, Cder, True]

EFintraspTdynBar= 1; {EFintraspTdynBar, EingestAngBar,

EinhaleAngBar, EdermalAngBar, CingestAngBar, CinhaleAngBar, CdermalAngBar]

{1, 0.0000499899, 2.3127x10-6, 6.9974x10-6, 0.0162476, 0.0083928, 0.0022596}

fxn[EFintraspTdynBar, 1, 1, 1, 1, 1, 1]

1.31708x10-8

fxnFG[EFintraspTdynBarr 1, 1, 1, 1, 1, 1]

0.461294

Timing[siml . Table[SimulateCdf[cdfs, nssm, Correlate+ corr, Report+Append], {nsim}];]

{117.017 Second, Null}

(* Check Jennrich X2 p-values *)

jenp=Transpose[{Range[Length[siml] ], Last/@Last/@Last/@siml} ]

{{1, 0.998878}, {2, 0.999285}, {3, 0.971796}, {4, 0.99744}, {5, 0.986883},

{6, 0.99969}, {7, 0.998695}, {8, 0.986122}, {9, 0.998931}, {10, 0.827001}]

{jen, calf,cvm}=

QUAnalyze[cdfs, fxn, nsam, nsim, SimIn+siml, Correlated corr, Scale+ 106];

H12
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TBL /@ jen

Fractile Value CVM(%)
0.01 0.0000790371 2.52229
0.05 0.000231529

Max[lArl] JennrichChi2 DegFr P–adj
2.6391

{~ti~fi~653 0.0187711 14.9189 21
0.5 0.00460686 1.47592

0.99969’ 0.95 0.172878 2.78787 }
0.99 1.36419
Mean 0.230061
Variance 138.397

8.07152
43.1698
94.2987

PlotCdf[{cvm, calf],Ymin+-.Ol, Xmin+ -.0001, Xmax+ l];

1

0.8

0.6

0.4

0.2

0 - 0.2 0.4 0.6 0.8 1

Put[cdf, PathName[Rang]]; Rang.cdf;

Rang =Get[PathNsme[Rang] ]; CdfQ[Rang]

True

{RangBar=BV[Rang, Empirical +True],

{Rang50, Rang95 , Rang99} =Idf[Rang, {.5, .95, .99}], Edf[Rang, 1]}

{0.230061, {0.00460686, 0.172878, 1.36419}, 0.987149}

Fraction oftotalrisk due togenotoxicnsk

{jen, calf,cvm}.

QUAnalyze[cdfs,

TBL/@jen

fxnFG, nsam, nsim, Sinitn+sixnl, Correlate +corr, Scale+ l];

Fractile Value CVM(%)
0.01 0.00262033 5.59528
0.05 0.0182746 1.61415

JennrichChi2 DegFr P-adj 0.5
{~~i~&053 ;?~j~~~ 16.3988 21 1.

0.465644
‘ 0.95 0.967092 ;::;:;:;1}

0.99 0.99007 0.0407695
Mean 0.479793 0.127858
Variance 0.107487 0.320455

end

H13
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w Rbar (Uncertainty Distribution)

{Ug, EgBar, EcBar, Qcdf, EFinterspTdyn, EFacuteTochrl } = 6 uncertain variates

Ug = Likelihood that Rg is true - UIO, 0.5] by assumption

{a,b,c,} = estimates of linear-quadratic parameters in Log[lO, Dca] that model Fc(Dca) (see “Potency.nb”)

corr= {{O, O, 0, 0, O}, {.49, O, 0, O}, {O, O, O}, {O, O}, {O}};

(1.0438 1.01933
sumsig =

12 + X2
)

2.06313

{nssm, nsim} = {2000, 10};

Ug= {{o, o}, {.5, l}};
cdfs= {Ug, EgBar, EcBar, Qcdf, EFinterspTdyn, EFacuteTochrl};

Clear [fxn] ;

fxn[ug_, Gall_, Call_, ~, ufl_, uf2_, ratio_ :False] := Module [

{Rg, Rc1, Rc2, Rc, Rtot, k= O.0269,

A, U, L,a= -7.23848, b =2.46626, c= O.469885, sumsig =2.06313],

Rg.1-E~-(q*ufl*l* 0.0000593Gall);

U.k*ufl* (l+uf2) *Call;

Rcl =PTBARS[U];

A.2c/Log[lo];

L= Log[lO, U];

lo’
Rc2 = ~@c*L(A+b (b-l) +2cL(2 (b+cL)-1)).sumsig;

Rc = Rc1 +Rc2;

Rtot = 1- (1-ug*Rg) (1-Rc);

If[ratio, ug*Rg/Rtot, Rtot]

1
;

fxnFG[ug_, Gall_, Call_, cl, Ufl_, Uf2_] := fxn[ug, Gall, Call, q, ufl, uf2, True]

{QcdfAng, EFinterspTdynAng, EFacuteTochrlAng}

{0.000366899, 1.11699, 6.62175}

fxm[O.25, 1, 1, QcdfAng, EFinterspTdynAng,

1,3516x10-8

EFacuteTocbrlAng]

fxn.FGIO.25, 1, 1, QcdfAng, EFinterspTdynAng, EFacuteTochrlAng]

0.449514

Timing[{jen, calf,cvm}=QUAnalyze[cdfs, fxn, nsam, nsim, Correlate+ corr, Scale+ 106];]

{79.5833 Second, Null}
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TBL /@j en

Fractile Value CVM(%)
0.01 0.000123904 3.00105
0.05 0.000341113 1.72923

{Y;;g; lo-’
Max[l Arl] JennrichChi2 DegFr P-ad-j 0.5 0.00608081 0.9~8997
0.0189821 2.71919 15 1. ‘ 0.95 0.0983222 2.46136 }

0.99 0.491497 5.9934
Mean 0.915155 68.8445
Variance 5667.36 97.831

PlotCdf[{cvm, calf},Ymin+- .0001, Xmin+ -.0001, Xmax+ .5];

1

0.8

0.6

0.4

0.2

“o 0.1 0.2 0.3 0.4 0.5

Clear[Rbar] ;

Put[cdf, PathName[Rbar]]; Rbar=cdf;

Rbar=Get[PathName [Rbar]]; CdfQ [Rbar]

True

{RbarAng.EV[F&ar, Empirical+True],
{Rbar50, Rbar95, Rbar99} =Idf[Rbar, {.5, .95, .99}], Edf[Rbar, 1]}

{0.915155, {0.00608081, 0.0983222, 0.491497}, 0.994501]

end

PlotCdf[{Rang, Rbar}, Ymin+ - .0001, Xmin+-.OOOOOlr Xmax+ .01];

0.6

0.4

0.2 ~

o
0 0.002 0.004 0.006 0.008 0.01

H15



H. Risk H16

Fraction

PlotCdf[{Rang, ~ar}, Ymin+ .7999, Xmin+-.0000Ol, -+ .5];

1

0.95

0.9

0.85

().8 ~
o 0.1 0.2 0.3 0.4 0.5

PlotCdf[{Rang, Rbar}, Ymin+ .9899, Xmin+-.0000Ol, Xmax+ 15];

0.998

0.996

0.994

0.992

0.99 ~
02468101214

of total risk due to genotoxic risk:

{jen, calf,c~} = QUAnalyze [cdfs, fxnFG, nsem, nsim, Correlate + corr, Scale + 1] ;

TEL /@ jen

Fractile Value :VM(%)
0.01 0
0.05 0 0

Max[l Arl] JennrichChi2 DegFr P-ad-j
{t?ti~~1108 0.0170892 2.45815 15 0.999999’ :::5 ~.946036 :.125971 }

0.99 0.984215 0.0656233
Mean 0.253274 0.356907
Variance 0.126086 0.343434

Edf[cdf, O]

0.553223

end

H16
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Confidence Bounds on JUV in Risk

mR*99 = Analytic upper-bound JUV estimator (@ 99th %ile on U & V)

{Rang99, RangBar, Rbar99, RbarAng}

{1.36419, 0.230061, 0.491497, 0.915155}

R*99b = rho99 x Rang99, rho99 = (Rbar99)/(eRbm) <------ As defined by Bogen (1995)

R*99a = rho99 x Rbar99, rho99 = (~99)/(-bar) c------ Alternative definition

(* CV for R99. *)

{RbarAngcv, Rbar99cv, RangBarcv, Rang99cv} = {.688, .0599, .432, .0807};

{rhoa = (Rang99 / RangBar) , rhob . (Rbar99 /RbarAng) }

{5.92966, 0.537064}

((l- (1-#[ [l]]’) (1-#[[2] ]’))”5) &/@{

{Ra.ng99cv, RangBarcv}, {Rbar99cv, RbarAngcv} ]

{0.438088, 0.689372}

{R99a = Rbar99 *rhoa, R99b = Rang99 *rhob, R99a /R99b}

{2.91441, 0.732656, 3.97787}

{gammaa, gammab} . (((1 -(1-# [[111’) (1-#[ [2112) (1-#[ [3112))’)&/@{

{Rbar99cv, Rang99cv, RangBarcv}, {Rang99cv, War99cv, RbarAngcv}})

{0.441385, 0.691846]

■ R*9$)= Target-NestedMonte-Carlo JUV estimators (~ 99th ~oile on V)

SimulateCdfs [Cdfs_, nsam_, nsim_, options_] := Module [{o, cdfs = Cdfs, x},

0= SimulateCdf[cdfs, nsam, options];

If [Head [o] =.= String, Return [StringJoin [”SimulateCdfs: Bad input\ n”, o]]];

x= If[Dimensions[o] ..= {Length [cdfs], nsem}, o, o[[l] ]];

cdfs = (Cdf[#l, XmaX + 10’15] &) /@X;

Prepend[Table [SimulateCdf[cdfs, nsam, options], {nsim - l}], o]

] /; nsam > nsim > 1

H17
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corrV = {{O, O, 0, 0, 0, O}, {.23, .88, 0, .89, 0], {O, .42, 0, .51}, {0.19, .92,

0.035}, {.077, .65}, {.18}};

cdfv= {EFintraspTdyn, EgAng, EcAng, EgAng, EcAng, EgAng, EcAng};

fxnv[x_, Ging_, Cing_, Ginh_, Cinh_, Gder_, Cder_] := Module[

{Rg, Rc},

Rg =

l- EA-(QcdfAng*EFinterspTdynAng*x *0.0000593 (0.843 Ging+0.039Ginh +0.l18Gder));

Rc=pTEARS[EFinterspTdynAng* (l +EFacuteTochrlAng

)*x*O.0269 (0.604 Cing+0.312 Cinh+ 0.084 Cder)];

l-(1- O.25Rg) (1-Rc)

1;

corrU ❑ {{0, 0,0, 0, o}, {.49, 0,0, o}, {0,0, 0}, {0,0}, {0});

cdfU. {Ug, EgBar, EcBar, Qcdf, EFinterspTdyn, EFacuteTochrl};

fxnW[ug_, Gall_, Call_, CL, ufl_, uf2_,

x—, Ging–, Cing—t GiA—, Cifi.-. Gder_, Cder_l :=Module[
{Rg, Rc},

Rg=l-EA- (q*ufl *x*0.0000593 Gall (0.843 Ging+0.039Ginh+ 0.l18Gder));

Rc=pTBARS[ufl* (l+uf2) *X*

0.0269Call (0.604 Cing+0.312Cinh+ 0.084Cder)];

l-(1 -ug*Rg) (1-Rc)

1;

fxnWIO.25, 1, 1, QcdfAng, EFinterspTdynAng,

EFacuteTochrlAng, EFintraspTdynBar, 1, 1, 1, 1, 1, 1]

8.5699x10-9

{ns-, nsim}= {999, 100}; {{i50, i95, i99}= (nsam+l) {50, 95,99}/100}

{{500, 950, 990}}

test =Cdf[2Range[nsem], Xmax->lO*nsam];

{Idf[test, .99], test[[i99+l]]}

{1980, {1980,
%}1

(CdfQ[#] llRQITest, #[[l]], #[[2]]]) &/@cdfV

{True, True, True, True, True, True, True}

(CdfQ[#] llRQITest, #[[l]], #[[2]]]) &/@cdfU

{True, True, True, True, True, True}

Timing [

simv=SimulateCdfs [

cdfv, nsam, nsim, Correlate+ corrV, Report+ False];

rvi = fxnV@@#&/@ simv;

vi= (#[[i99, 2]]&/@(Sort/@MapThread[

Transpose[{#l, Transpose[#2]}] &, {rVi, simv}]));

simu = SimulateCdfs[cdfU, nsem, nsim, Correlate +corrU, Report+False];

vij = Transpose[Table[#, {nSam}]] &/@vi;

simin ❑ MapThread[Join[#l, #2] &, {simu, vij}];

Dimensions[simin] ]

{499.067 Second, {100, 13, 999}}

H18
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Timing [{jen, cdf, cvm} . QUAmalyze [13, fxnUV, nsam, nsim, SimIn + simin, Scale + 106] ;]

{35.0667 Second, Null}

min (499.067+35.067) /60

8.90223min

TEL [jen]

Fractile
0.01
0.05
0.5
0.95
0.99
Mean

Value
0.00191737
0.00557622
0.0990887
4.08454
32.9278
121.391

Variance 5.42842x107 27.8288

PlotCdf[{cvm, calf},Ymin+-.Ol, Xmin+ -.0001, 2huax+ 5];

1

0.8

0.6

0.4

0.2

0 1---
012345

end

■ R*99=Tra&tiofial Nested Monte-Carlo JUVestimators(@ 99th %ileonV)

Compare variability fractiles forthe50th, 95th and99th%ile with respect touncertainty, respectively, obtained usinga

traditional nested Monte-Carlo approach:

{Dimensions /@ {simu, simv}, {nsam, nsim, i50, i95, i99} }

{{{100, 6, 999}, {100, 7, 999}}, {999, 100, 500, 950, 990]}

Timing [o . Transpose /@ Table [

Prn[i] ; Table[

ui j = Transpose [Table [#[ [j]] & /@ simu[ [i]], {nsam}l ] ;
simin . Join[uij, simv[ [i] ]] ;
ruj = Sort [fxnUV@@simin] [[{i50, i95, i99}]],

{j, nsem}], {i, nsim}]; ]

i= 100

{34278. Second, Null}
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{38278. (60. A-2)h, 38278./(499.067+35.067)}

{10.6328h, 71.6637}

{Dimensions [o], nsam, nsim}

{{loo, 3, 999}, 999, 100}

fx[r_] :=r

in.List /@#&/@Transpose[o] ;

Dimensions in]

{3,100, 1, 999}

{jen, calf,cvm] =Transpose [QUAnalyze[l, fx, nsam, nsim, SimIn+#, Scale +106] &/@in];

Variability fractiles for the 50th, 95th and 99th %ile with respect to uncertainty, respectively:

TBL/@jen

Fractile Value m(%)
0.01 0.0000280892 1.40513
0.05 0.0000751209 0.711428

{:::5
0.000966502 0.385091
0.0117496 0.721707 ‘

0.99 0.033135 1.59806
Mean 0.0292517 34.0115
Variance 10.4468 69.2366

Fractile Value CVM(%) Fractile Value CVM(%)
0.01 0.000642227 1.55942 0.01
0.05

0.00223991 2.71725
0.00150738 1.19946 0.05

0.5
0.006994 2.28426

0.0280373 1.03367 0.5 0.135565
0.95

2.08139
0.482445 1.45839’ 0.95 4.11179 4.1132 }

0.99 2.69899 2.60364 0.99 34.18 4.19975
Mean 20.9685 29.4023 Mean 127.689 15.3807
Variance 4.1733 x10C 56.4701 Variance 5.16397x107 25.8577

Resultsfrom previous2analytic[U6?.99]&1 targeted[UC?.95,.99]methods (denominators)

correspondingresultsfrom2-D nestedprocedure:

{34.2/{4.1 , .87}, {4.08/2.69, 32.9/34.2}}

{{8.34146,39.3103}, {1.51673, 0.961988}}

for V62.99, compared to

PlotCdf[Join[Rest[cvm] , Rest[cdf]], Ymin+-.Ol, Xmin+ -.0001, Xmex+ 5];
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PlotCdf[Join[cvm, calf],Ymin+ -.01, Xmin +-.0001,

‘~

Xmax + .25];

0.8

0.6

0.4

0.2 [~Uz i

‘o 0.05 0.1 0.15 0.2 0.25

end

end

Population Risk

# expected cases for different values of total-population size, n, via the relation: cN> = n(cRb-). Note that Rbar (and

hence cRb-) was scaled above by a factor of 106, and so needs to be resealed by 10-6.

npop = {100, 1000, 2000, 10’, 30000, 10’, 10’, O.997963*1O’};

{RbarAng, npop * (RbarAng * 10-’)}

{0.915155, {0.0000915155, 0.000915155,

0.00183031, 0.00915155, 0.0274546, 0.0915155, 0.915155, 91.3291}}

Toobtain thelikelihood PO of Opeople atriskassociated witispecified population sizes, first defivefie probabili~ mass

function corresponding to Rbar, adjust to reflect the fact that its last element is artificially high due to how QUAnalyze

defines this last element, and then use the adjusted pmf to calculate the complementary conditional Poisson likelihoods {PO,

l-PO } corresponding to specbled population sizes (npop):

pmf . {lO-c #[[l]], #[[2] ]]&/@ Pmf[Rbar];

{ri, pi} . Transpose [pmf]; {Plus @@pi, Take [pmf, -2] }

{l., {{0.00136677, 0.00049975}, {0.0101966, 0.00049975})}

adjpmf = Transpose [(Drop [#, -1] &/@ {ri, pi}) {1,
l- La~t[pi] ‘];

{ri, pi} = Transpose [adjpmf ];

{Plus @@ pi, Take [adjpmf, -2] ]

{l., {{0.000343409, 0.0005}, {0.00136677, 0.0005}}}
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0. {npop, npop*7.6 /70, PO ❑ (Plus@@ (e-**’L*pi)) & /@nPOP, 1 -PO,

TBLIPrepend [Transpose [o], {n, nRes, Po, 1- Po, “<N>”}] ]

n
100
1000
2000
10000
30000
100000
1000000
9.97965x107

nRes
10.8571
108.571
217.143
1085.71
3257.14
10857.1
108571.
1.0835 x107

Po
0:999913
0.999423
0.999166
0.998468
0.997568
0.995219
0.974127
0.5

1-PO
0.0000867535
0.000577328
0.000833686
0.00153171
0.00243198
0.00478123
0.0258733
0.5

<N>
0-:0000915155
0.000915155
0.00183031
0.00915155
0.0274546
0.0915155
0.915155
91.3292

npop*RbarAng *10-6};

To obtain the#people atrisk associated with Po=0.5, usethe adjusted pmfto calculate the conditional Poisson likelihood

correspondingto alikelihoodof0.50 (by manual numerical optimization [not shown]):

Plus@@ (e-0.g97963*i08*=i*pi)

0.5

Thus, only if about 100 million people were exposed would it be more likelythan not thattherewould be 1 ormore cases.

end

H22
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Appendix 3.1

Functions Used

■ /14af/7ernatica@functions

Note: The following Mathernatica shorthand notation was used that is not included in the list of functions below:

a+b = a plus b

a-b = a minus b

a b = a*b = the product of a and b

a/b =a divided by b

aAb = a to the power of b

{a,b,c,...} = List[a,b,c,...] = a “list” (i.e., array, vector, or set) of elements a,b,c, ... .

fxrd~ {a,b,c,... } = Map[fxn, {a,b,c,... }] = a new list made by mapping (i.e., applying)

the function fxn onto each member of the list {a,b,c,... }

? Cholesky

Choleslcy[M]gives the Cholesky decomposition c of a symetric positive definite square matrix M (i.
e., the lower triangular matrix c such that c c $ . M) , provided Det [M] does not equal zero.

? Dimensions

Dimensions [expr] gives a list of the dimensions of expr.
Dimensions [expr, n] gives a list of the dimensions of expr down to level n.

? Drop

Drop[list, n] gives list with its first n elements dropped. Drop[list, -n] gives
list with its last n elements dropped. Drop[list, {n}] gives list with its nth

element dropped. Drop[list, {m, n}] gives list with elements m through n dropped.

?Flatten

Flatten[list] flattens out nested lists. Flatten[list, n]
flattens to level n. Flatten[list, n, h] flattens subexpressions with head h.

? Last

Last[expr] gives the last element in expr.

? Length

Length[expr] gives the number of elements in expr.

? Log

Log[z] gives the natural logarithm of z (
logarithm to base e). Log[b, z] gives the logarithm to base b.
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? MapThread

MapThread[f, {{al, a2, ... }, {bl, b2, ... }, ... }]
gives {f[al, bl, ... ], f[a2, b2, ... ], ... ]. MapThread[f, {exprl,
expr2, ... }, n] applies f to the parts of the expri at level n.

? l.lax

Max[xl, x2, ... ] yields the numerically largest of the xi. Max[{xl,
x2, ... }, {yl, ... }, -.. 1 yields the largest element Of any Of the lists.

?Min

Min[xl, x2, ... ] yields the numerically smallest of the xi. Min[{xl,
x2, ... }, {yl, ... }, ... ] yields the smallest element of any of the lists.

?PreVend

Prepend[expr, elem] gives expr with elem prepended.

? Range

Range[imax]
generates

? Solve

Solve[eqns,

generates the list {1, 2, ... , imax}. Range[imin, imax]
the list {imin, .

. . . . -.

vars] attempts to
eqns, vars, elims] attempts

? Sort

Sort[list] sorts the elements
canonical order. Sort[list,

? Take

Take[list, n] gives the first

., imax} . Range[lmm, max, dl] uses Step al.

solve an

to solve

equation or set of equations for the variables vars. Solve[

the equations for vars, eliminating the variables elims.

of list into

p] sorts using the ordering function p.

n elements of list. Take[list, -n] gives the

last n elements of list. Take[list, {m, n}] gives elements m through n of list.

?Trenspose

Transpose[list] transposes the first two levels in
list. Transpose[list, {nl, n2, ... }] transposes list so that the
levels 1, 2, ... in list correspond to levels nl, n2, ... in the result.

end

■ l?H@4.0functions

<< RiskQ’;

?AverageCdf

AverageCdf[cdfs, options: ] generates a cdf which is the exact average of the

input list of cdfs andlor cmfs. By default, the input cdfs are equally weighted (

i.e., all cdfs are assumed to be equally likely) . Use Weights+weights to specify

weights. Use TestCdf+False to suppress automatic CdfQ test of input cdfs. Use

Approximate +n (or +xlist) to return an approximation of the true average cdf

evaluated at n>l equal abcissa intervals (or at the supplied list of abcissa values) .

12
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? Cdf

Cdf[x, options] returns a matrix representing a cdf (cumulative distribution funtion) from which

x is (assumed to be) sampled if x is a vector. The first point is {x1o,O} where X1O is

assumed to be Min[O,Min[x]] unless xlo<Min[x] is entered with Xmin+xlo. The last point

is {xhi,l} where xhi is assumed to be Max[x] unless xhi2Max[x] is entered with Xmax+

xhi. Cdf estimates the cdf corresponding to n samples of a continous random variate,

using linear interpolation. Use Weights+w to obtain a cdf based on weight-vector w

corresponding to list (in which case the xmax option is ignored) . If x is a cmf or a

pmf, a corresponding cdf is output. Use Fmf+True (or the alternative function Fmf) to

obtain the probability mass function (pmf) corresponding to list. Use Simplify+False to

suppress default distribution-simplification algorithm. To obtain the sample cdf (a step

function) corresponding to list, or to model a discrete random variate, see Cmf. See also RQ.

? Data

Data[datarows, exprl, ...] returns a list of data rows specified symbolicallyas a function of

the input datarows list, where each datarowsi = {xil, xil ,..., xin} has n COl~Sr and
expr~ are Data arguments. If datarows is a list but not a list of lists, then it is

assumed to specify a single data column. BY default, datarowsl must be a list whose

jth element (namej) is a unique symbol or string used to name the variate whose values

Xij appear in the rest of the jth data columm for j=l,...,n; however, if exprl is a

vector containing n symbols and/or strings, then exprl j=namej j-s assumed. If exprl

is a non-Rule expression (e.g. , involving any of the namej ) , then exwl is returned

evaluated using the specified data column(s). Otherwise, exprk must specify one or

more of the following options (described below) to transform datarows: Append (or

Replace), Classify (or Bin), Complement, Drop, Fill, Interpolate, Intersection, Merge,

Names, Number, Rermne, Restructure, Set, Shift, SortBy, Take, andlor Union. These

options are applied in the order they appear (one or more times) in exprk. Evaluate

Data[option] to get information about any Data option. Column names (e.g., namel)

aPPearin9 in anY of these options are assumed to be among those defined for (e.g. ,
as the 1st row of) datarows; any corresponding reassigned name (e.g., X after the

assignment X.namel has been made) used should appear as an argument of HoldForm (e.g.,

as HoldForm[X]). Data should be nested only if the nested expr is a rule or rule sequence.

?Ev

EV[X, options] returns the arithmetic average of (e.g., a vector) X, or the expected value of

x if x is a valid calf, cmf or pmf. If x is a vector, Weights+w may be used to obtain

the weighted average value corresponding to the weights-vector w applied to x. If x

is a cdf with >2 evenly spaced ordinate values (i.e., evaluated at equal probability

intervals) and Empirical+True, then the minimum and maximum abscissa values are ignored.

? Edf

Edf: See EvaluateCdf, RQ.

?EvaluateCdf

EvaluateCdf[cdf, x,complement:False] calculates the probability p that a

random variate distribituted as cdf is less than or equal to x, using linear

interpolation. If a third argument, True, is included, the output probability is 1-

P. The input x may be a list, in which case a corresponding output list is generated.

13
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? FIT

FIT IxY, fxn_List, x_Symbol, options] fits the General Linear Model (GLM), y(x) = Sum[qi Fi(x)]
for i=l...np, to xj-yj data (for j.1...n) given in XY (an n-by-2 matrix) by direct or
generalized least-s~ares regression, assuming yj are normally distributed as N(Eyj,
Sqrt[v/wj]) with wj=l by default and v estimated by the mean square of y-residuals (
unless KnownVariances+ True is used, in which case yj - N(O,Sqrt[l/wj] is assumed).
Use NYatX+nyj, with integer nyj>O (ny=l by default) or nyj an n-lengthed such list,
to treat yj as means, in which case corresponding sample stand. devs. sj of nyj Y-
values must be specified using Errors+sj. Use Weights+wj to similarly specify known
weights wj; or use Weights+{Wyhat, yhat, df} to specify that wj=(wyhatl yhat=y(xj))
or that wj=(wyhatj lyhat=y(xj))--where Wyhat is an expression (or Wyhatj is a list of
n expressions each) involving the symbol yhat--in which case the fit is obtained by
iterative reweighing assuming df (=0 if not specified) extra degrees of freedom are lost
in estimating Wyhat from the data (& use ,MaxIterations+maxit andlor Tolerance+tol to

override defaults). If Report+True, SDS and 100P% conf. limits on ai, R2, a chi-square
test-of-fit, ANOVA table, F-tests of GLM-fit and nonzero qi for i>O, and a plot are
all printed (use Report-Plot to add a plot) . The qi estimates are output, along with:
covariance matrix, the list {xval,yhat,yLCL, YUCL}, a sum-of-squares & assoc. degree-of-
freedom matrix, the F-values and their p-values, the chi-square value and its p-value,

the fitted function, and/or a plot using Output+{CV, xval, SumSquares, F, PvalF, X2,

PvalX2, BestFit, [and/or] Plot}, where xval may be a list. Use Confidence+p to change

p from 0.95, and use Xmin+xlo, etc. (see PlotData Options) to change plot defaults.

? Idf

Idf: See InverseCdf, RQ.

?InverseCdf

InverseCdf[cdf, p, options] evaluates cdf at the cumulative probability value P, for any

valid cdf or cmf. The input p may be a list of probability values, in which case a

corresponding output list is generated. Use TestCdf->False to suppress default CdfQ test.

?NormalCdf

NormalCdf[z, s:, n:100] = the standard Gaussian calf; i.e. the probability p that Z<=z for

real z and standard normal random variate Z. If z is a list, p is the corresponding

list. If s is set to Inv, then the inverse standard Gaussian cdf is returned for

argument(s) z where O<=z<=l. If s is entered as a nonegative real number, then an

aPProximate cdf is returned corresponding to the parameters {z= mean, s= stand. dev.}
for a nonstandard random variate Z, evaluated at n equiprobable quantile intervals.

In evaluating the inv. stand. Gaussian cdf for Min[p,l-p]>2.21 10A-7, NormalCdf makes

use of an llth-order polynomial approximation with an absolute error < 0.503 10”-6.

?PlotCdf

PlotCdf[cdfs] returns a plot of a cdf or

of several cdfs entered as a list of cdfs. See PlotOptions.

?PlotData

PlotData[data,options:] plots an N-by-2 (or (x vs y) data set (DS), or a list of n such sets,

with points joined by lines (unless JoinPoints->False is used) . Change point style with

Style->list which by defualt is {OO,OA,OB,OV,OD,O,A,B,V,D] = {open Point, Triangle,

Square, InvTriangle, Diamond, ...(& their solid equivs.)}; use {TO,TA,TB,TV,TD} for

transparent open symbols; use {P,x,M,I} for {plus, cross,dash,bar}; & use J to join

points from adjacent DSS. Size and JoinPoints may be n-lengthed lists, where nc=Length[

Style] <.2n-l depending on how my Js are in Style; JoinPoints->False is enforced for

DSS referenced by J in Style.Use FitTo->{f[x] ,x} to include a plot of f[x] (which may

be a list of functions) vs. x. Use data.Plot to plot functions only. See PlotOptions.

14
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? QUAnalyze

QUAnalyze[cdfs, Fxn, nsam, nsim, options:] performs a quantitative uncertainty analYsis involvin9

simulated values F~jk of Fn[varl, ...,var.] , where Fxn is a user-defined listable

function, j = 1, ....nsam. andk=l, .... nsim. Uncertainties in Vari, i=l, ...,n,

are specified by the corresponding input cumulative probability distributions, cdfs =

{cdfl, .... cdfn}, where each cdfi must be either a valid Cdf object (for which TrueQ[

cdfi]..True) or a valid symbolic calf-specification (see SimulateCdf). All cdfs are

by default uncorrelated, unless Correlate+T is used to specify T as the target rank-

correlation matrix (or as its upper-right rows--see Reflect) . The list {SimReport,

cdfFxn, cvmFxn} is output, where: SimReport lists the coefficients of variation (as a %)

of EVIFXIlj]k and corresponding P-fraCtileS of F=, the maximum of Jennrich chi-square

values assessing homogeneity with T, its degrees of freedom, and the corresponding Hommel-

adjusted p-value; cdfFxn characterizes Fxn uncertainty (as the means of nsim sorted

sets of nsam sample values of Fxn--i.e. , as nsam mean Fxn-fractile values--where nsam >

n and nsam>nsim>l) ; and cvmFxn lists the corresponding coefficients of variation of

the nsam fractile means (and so summarizes corresponding Monte-Carlo sampling error).

By default, the minimum and maximum possible values of Fxn are assmned to be X1O . Min[

Fxnj~] and xhi = MaX[E’XIljk]r respectively; use Xmin-mnin andlor xmax+xmax to change

these defaults (provided mirxxlo and xmax>xhi). Use Fractiles + p to specify the list

of p-fractiles of Fxn to be used to summarize simulation quality. Use SimIn+ML to

specify the calf-simulation values to be used, where either: (1) ML is a list of nsim

matrices each n-by-nsam in dimension (as output by SimulateCdf) ; or (2) ML is a list

of nsim elements each of the form {M, RankCorrelations+R, Jennrich+{x2,df,p}} (i.e.,

each element of ML is a list of the form output by SimulateCdf using the Report+Append

option) , where M is an n-by-nsam matrix, R is an n-by-n matrix, and x2, df, and p are

numbers with O<p<l) . If SimIn is specified, the QUAnalyze cdfs argument supplied may be

the integer n. Note that cdf and cvm may be plotted together because they use common

abscissa values, which are scaled by an n-fold factor if the option Scale-m is used.

?Reflect

Reflect[upper, diagvec:Automatic, anti:False] returns an n-by-n symetric square matrix M given

uPPer, an (n-l)-length list of (n-l-i)-length lists (i.1 ,...,n) that represent the first n-1

rows of upper elements (without the diagonal elements) of M. The diagonal is a vector of ones

by default, or may be entered as the 2nd argument (either a constant or an n-length list).

If the 3rd argument is set to True, then the corresponding antisymetric matrix is returned.

? RQ

RQ[operation, distribution, parameter(s), z] performs an operation Cdf (cumulative

distribution function), E=M= Mean (=expected value), V=Var=Variance, D=Ran9e=Domain,

P.Pr.Prob=PDF, C=Edf=CDF (CC= C complement), Q=Idf=Quantile (QC= Q complement) ,

or Test. (test validity of 2nd & 3rd RQ parameters) on a B=Beta, Bi=Binomial, X2=

ChiSquare, E=Exponential, F=FRatio, G=Gamma, Geo=Geometric, H=Hypergeometric, LN=

LogNormal, Lg=Logistic, NBi=NegativeBinomial, N=Normal, Psn=Poisson (=P), T=StudentT,

Tri.Triangular, U=Uniform, W.Weibull (=Wbl), or M.Empirical (=Cdf.Cmf) distribution

with the specified paraineter value(s) or for the particular cdf/cmf, at the point(s)

z. If z is included with the Cdf operation, the output cdf is given for z+l points.

?SimplifyCdf

SimplifyCdf[cdf] returns any valid input cdf or cmf in its simplest

possible form, that is, without any unnecessarily repeated or redundant elements.
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? SimulateCdf

SimulateCdf[calf(s),nsim, options:] generates a list of nsim values simulated from an

cdf , or of n lists of nsim values with the ith list simulated from the ith of an

input list of n cdf objects with a target rank- correlation matrix T. Input T using

Correlate+T for a square matrix T (or its upper-right rows--see Reflect); by default

T is an identity matrix. Each cdf must be either empirical (such that TrueQ[cdf]==

input

True) or a valid {type, par} calf-specification (see RQ). Simulations use a Systematic

Latin Hypercube (SLH) method, adjusted (unless Correlate+ False is used) to yield

variates whose true rank-correlation matrix R approximates T. Alternative methods

may be specified with SimMethod +LatinHypercube (+LH) or +Random (+U,4Jniform) . If

the first argument is entered as n for n>O, then calf(s) are assumed to be n standard

normal cdfs and T=R is the actual product-moment correlation matrix. Note that unless

Correlate+False, nsim must be >n. Use Report+False to suppress the Jennrich- function

report comparing T VS.R (suppressed by default for normal variates, for which T=R), or

use Report-Append to append R and {chi2, df, pval] from this report to the output (see

Jennrich) . Use SimIn+ mymatrix (SimOut+True) to use an input (output the simulated)

rank-matrix. Use TestCdf+False to save time if CdfQ[cdf].=True for each input calf.

?StandardizeCdE

StandardizeCdf[incdf, Values, options:] returns a new cdf based on linear interpolation

of incdf (any cdf or cmf) evaluated at Values, where Values are assumed to be

probability values, except that Values are treated as cdf abcissa values if any of

the Values are <0 or >1 or if the option ProbabilityValues+ False is used. Values

must be either a list or an integer>O; in the latter case calf-evaluation occurs in n

equal increments over the specified range of probability or abcissa values. If the
Midpoints*True option is used,then calf-evaluation occurs at the midpoints of the

successive element-pairs in the specified set of values, rather than at those values

themselves. If incdf is a list of cdfs, then a corresponding list of standardized

cdfs is output. Use TestCdf+False to suppress automatic CdfQ test of input cdfs.

? TBL

TBL[x] = TableForm[x, TableSpacing->I]. TBL[x,n] . TableForm[
x, TableSpacing->n]. TBL[x,n,r] = TableForm[Take[x,r], TableSpacing->n].

?WriteMatrix

WriteMatrix[filenameString, dataMatrix, separatorString] writes a data matrix to

the specified filename as an ASCII file. The separatorString is a tab by default.

end
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■ Other Functions

? LSMin

LSMin[x, y,p, fxp, options] Attempts to reduce x2, i.e. , the chi-square (i.e., weighted sum of

swared residuals) between a list Y of data and a user-defined function fxp[x,p] of
corresponding independent-values x and parameters P, starting with the initially guessed

parameter list p, returning {phat, sd, {x2,df,p}} where phat is the list of asymptotic

maximum-likelihood parameter-value estimates, sd is the corresponding list of standard

deviations (or the full covariance matrix if Output->CVM is used), x2 is the goodness-

of-fit chi-square value, df.(Length[y] - # est. parameters), and p is the corresponding

p-value. Use NYatX->ny if the y-values are the means of (a list of) ny corresponding

values, with corresponding standard deviations sdy all 1 (unless SDY->SY is used) . It

is assumed that yj-N(Eyj,Sqrt[v/wj] ) with wj.1 by default (and v . mean square of y-

residuals if XnownVariances-> False is used, in which case p is meaningless; otherwise

V=l) . Use Weights->wj to specify weights wj. Use Weights->{Wyhat, yhat, df} to specify

wj=(wyhatl yhat=y(xj)) for What an expression (or list of n expressions each) involving
the symbol yhat, in which cases the fit is obtained by iterative reweighing. If weights

are not specified, RnownVariances-> False is assumed. Use Parameters-> pinlist with “

ordered integer index-list pinlist to restrict optimization to a subset of p specified by

pinlist. The search stops if reductions in chi-square become less than tol.O.001 (reset

using Tolerance->tol) or if iterations > maxit.100 (reset using Maxit->maxit; output

appended with ‘Warning’) . Set Progress->True to see intermediate output (at precision p

using SeePrecision-> p) . Levenberg-Marquardt minimization of the chi-square objective

function is used (WH Press et al., Numerical Recipies, Cambridge U. Press, New york,

1986, pp. 521-528), with shifts at each step having a relative size equal to 1000

(reset using Step->size). In the case of unknown sigy, generalized (i.e., iteratively

reweighted) x2-minimization is performed (see Carrel and Rupert, Transformation

and Weighting in Regression, Chapman and Hall, New York, 1988) . Needs MarqCof,

Partial, Bracket, ParaMin, and Mathematica4s CDF and ChiSquareDistribution functions.

? MSDX

MSDX[GMX,GSDX] returns the arithmetic mean and arithmetic sdandard

deviation of a lognormal variate X that also has the specified geometric mean

GMx and geometric sdandard deviation GSDX, based on the method of moments.

? GMGSDX

GMGSDX[MX,SDX] returns the geometric mean and geometric sdandard

deviation of a lognormal variate X that also has the specified arithmetic

mean MX and arithmetic sdandard deviation SDX, based on the method of moments.

? GMGSDX1

GMGSDxl[cvWant,cv2] returns the GM and GSD of a lognormal variate

Xl, such that the product x1*x2 has the desired coefficient of variation (

CV) . cviiant, conditional on the lognormal variate X2 having an arithmetic

mean and CV equal to 1 and CV2, respectively, based on the method of moments.
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